
1

MPCGPU: Real-Time Nonlinear Model 
Predictive Control through Preconditioned 

Conjugate Gradient on the GPU

Symmetric Stair Preconditioning
of Linear Systems for 

Parallel Trajectory Optimization

Emre Adabag1, Miloni Atal*1, William Gerard*1, Brian Plancher2

1: School of Engineering and Applied Science, Columbia University
2: Barnard College, Columbia University

Xueyi Bu1, Brian Plancher2

1: School of Engineering and Applied Science, Columbia University
2: Barnard College, Columbia University

This material is based upon work supported by the National
Science Foundation (under Award 2246022). Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily
reflect those of the funding organizations.
*These authors contributed equally to this work.



2

Introduction and Motivation

Background and Related Work

Parallel Preconditioners

The (Symmetric) Stair Preconditioner

Experiments and Results

2

3

5

1

4

MPCGPU: Real-Time Nonlinear Model 
Predictive Control through Preconditioned 

Conjugate Gradient on the GPU

Symmetric Stair Preconditioning
of Linear Systems for

Parallel Trajectory Optimization
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State-of-the-Art Robot Motion Planning and Control
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Romero, Angel, et al. "Model predictive contouring control for time-optimal 

quadrotor flight." IEEE Transactions on Robotics 38.6 (2022): 3340-3356.

Atlas Gets a Grip | Boston Dynamics (youtube.com/watch?v=-e1_QhJ1EhQ) 

and Atlas | Partners in Parkour (youtube.com/watch?v=tF4DML7FIWk)

…but there still is a 
long way to go!

Inside the lab: How does Atlas work? 

(youtube.com/watch?v=EezdinoG4mk)

One Major 
Challenge –

Computational 
Speed!



CPUs are not getting faster and CPU design benefits are 
decreasing in effect resulting in a need for parallelism!
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GPUs offer increased computational parallelism and are 
natural choice to explore to accelerate MPC



Multi-Core CPU

L2+ Cache

DRAM

GPU

Control 
Logic

Arithmetic and Logic 
Units (ALUs)

L1 Cache
Control 

Logic

Arithmetic and Logic 
Units (ALUs)

L1 Cache

Control 
Logic

Arithmetic and Logic 
Units (ALUs)

L1 Cache
Control 

Logic

Arithmetic and Logic 
Units (ALUs)

L1 Cache

L2 Cache

DRAM

7

Our motivating question:

How can we best accelerate 
MPC on the GPU?

GPUs offer increased computational parallelism and are 
natural choice to explore to accelerate MPC
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Model Predictive Control (MPC): 
Via Successive Convex Optimization

𝑥𝑠

𝑥𝑔

min
𝑥0,𝑢0…𝑥𝑁−1,𝑢𝑁−1,𝑥𝑁

𝑙𝑓 𝑥𝑁 + ෍

𝑘=0

𝑁−1

𝑙(𝑥𝑘 , 𝑢𝑘)

subject to: 𝑓 𝑥𝑘 , 𝑢𝑘 = 𝑥𝑘+1 ∀𝑘 ∈ [0,𝑁)

𝑔 𝑥𝑘 , 𝑢𝑘 ≥ 0 ∀𝑘

Minimize a separable 
cost across time

Obey Physics

Position/Velocity/Torque Limits
Collision Avoidance

Waypoint Goals (𝑥𝑠, 𝑥𝑔)

Other Constraints

Direct Transcription

MPC: Control through continuous re-planning 
often via Trajectory Optimization
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While (not converged):

1) Compute Taylor Approximation

2) Take Gradient Step

3) Make sure we didn’t go so far the 
approximation is invalid (line search 
or trust region)!

Model Predictive Control (MPC): 
Via Successive Convex Optimization

While (not converged):

1) Compute Taylor Approximation

2) Take Gradient Step

3) Apply a line search (or trust 
region) to ensure descent on the 
original problem

Successive Convex Optimization
𝐺 𝐶𝑇

𝐶 0
−δZ
λ

=
𝑔
c

Solve the 
KKT 

System

Iterative Methods like the 
Preconditioned Conjugate Gradient 
Algorithm are GPU-Parallel Friendly

But they require a 
symmetric system

and preconditioner!
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Solving the KKT System via the Schur Complement

Schur Complement

KKT System

𝐺 𝐶𝑇

𝐶 0
−δZ
λ

=
𝑔
c

The remaining trick is then to find 
a good parallel preconditioner

Ax = b

P ≈ 𝐴

P−1Ax = P−1b
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The trick is then to find a good parallel preconditioner

Jacobi or Block-Jacobi Alternating/Overlapping Block

Can we do better?
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Polynomial Splitting Preconditioners

Key Requirement:Tradeoff between accuracy 
and computational 

complexity & sparsity
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A block tri-diagonal stair preconditioner

Schur Complement is 
Block Tri-Diagonal 

and Symmetric!



Left and Right Stair Splitting

[52] Li, Hou-Biao, et al. "On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors."
[53] Li, Hou-Biao, et al. "Chebyshev-type methods and preconditioning techniques.“
[54] Lu, Hao. "Stair matrices and their generalizations with applications to iterative methods I: A generalization of the successive overrelaxation method.“ 17

A block tri-diagonal stair preconditioner



[52] Li, Hou-Biao, et al. "On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors."
[53] Li, Hou-Biao, et al. "Chebyshev-type methods and preconditioning techniques.“
[54] Lu, Hao. "Stair matrices and their generalizations with applications to iterative methods I: A generalization of the successive overrelaxation method.“ 18

A block tri-diagonal stair preconditioner

Sparse Analytical Inverse



[52] Li, Hou-Biao, et al. "On some new approximate factorization methods for block tridiagonal matrices suitable for vector and parallel processors."
[53] Li, Hou-Biao, et al. "Chebyshev-type methods and preconditioning techniques.“
[54] Lu, Hao. "Stair matrices and their generalizations with applications to iterative methods I: A generalization of the successive overrelaxation method.“ 19

A block tri-diagonal stair preconditioner

Benefits

• Sparse
• Parallel-Friendly
•

Challenges

• Not Symmetric so 
PCG will not work!

Is this good for 
PCG inside MPC?
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A symmetric block tri-diagonal 
stair-based preconditioner

[52], [53], [54]

Symmetric!_

Transpose!



21

A symmetric block tri-diagonal 
stair-based preconditioner

[52], [53], [54]

Symmetric!_

Challenges

PCG not
guaranteed 
to converge!

• Sparse
• Parallel-Friendly
• Symmetric Positive Definite
•

Benefits
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An improved symmetric block tri-diagonal 
stair-based preconditioner

[52], [53], [54]

T

T



23

An improved symmetric block tri-diagonal 
stair-based preconditioner

[52], [53], [54]

• Sparse
• Parallel-Friendly
• Symmetric Positive Definite
•

Benefits
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We tested the impact of our preconditioner on 
representative trajectory optimization problems

25

github.com/A2R-Lab/SymStair
Image Sources: Drake Simulator and underactuated.csail.mit.edu

https://github.com/A2R-Lab/SymStair


Numerical analysis confirms the theoretical
eigenvalue distribution for trajectory optimization …
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…resulting in a drastically reduced condition number…
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…resulting in a drastically reduced condition number…
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…resulting in a drastically reduced condition number…
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…and critically fewer iterations to convergence on 
representative trajectory optimization problems
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…and critically fewer iterations to convergence on 
representative trajectory optimization problems
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How can we leverage this to accelerate end-to-end 
robotic planning and control systems?

32

𝑥𝑠

𝑥𝑔

Emre Adabag1, Miloni Atal* 1, William Gerard* 1, Brian Plancher 2

1: School of Engineering and Applied Science, Columbia University    2: Barnard College, Columbia University

Stay for the 
next paper!

MPCGPU: Real-Time Nonlinear 
Model Predictive Control through 

Preconditioned Conjugate 
Gradient on the GPU



Symmetric Stair Preconditioning of Linear Systems
for Parallel Trajectory Optimization

33

The symmetric stair preconditioner is parallel 
friendly and has advantageous theoretical 
properties (resulting spectral radius ≤ 1)

1

This translates to improved condition number 
and iterations to convergence for iterative 

linear system solvers in the context of 
trajectory optimization

2

bplancher@barnard.edu a2r-lab.orgXueyi Bu1, Brian Plancher2

1: School of Engineering and Applied Science, Columbia University    2: Barnard College, Columbia University

mailto:bplancher@barnard.edu
a2r-lab.org
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Model Predictive Control (MPC): 
State-of-the-Art Robot Motion Planning and Control
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Model Predictive Control (MPC): 
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Atlas Gets a Grip | Boston Dynamics (youtube.com/watch?v=-e1_QhJ1EhQ) 
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…but there still is a 
long way to go!

Inside the lab: How does Atlas work? 

(youtube.com/watch?v=EezdinoG4mk)

One Major 
Challenge –

Computational 
Speed!



…resulting in a need to leverage parallelism!

41https://github.com/karlrupp/microprocessor-trend-data
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GPUs offer increased computational parallelism and are 
natural choice to explore to accelerate MPC
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Our motivating question:

How can we best accelerate 
MPC on the GPU?

GPUs offer increased computational parallelism and are 
natural choice to explore to accelerate MPC
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Model Predictive Control (MPC): 
Via Successive Convex Optimization

min
𝑥0,𝑢0…𝑥𝑁−1,𝑢𝑁−1,𝑥𝑁

𝑙𝑓 𝑥𝑁 + ෍

𝑘=0

𝑁−1

𝑙(𝑥𝑘 , 𝑢𝑘)

subject to: 𝑓 𝑥𝑘 , 𝑢𝑘 = 𝑥𝑘+1 ∀𝑘 ∈ [0,𝑁)

𝑔 𝑥𝑘 , 𝑢𝑘 ≥ 0 ∀𝑘

Direct Transcription

min
𝑥0,𝑢0…𝑥𝑁−1,𝑢𝑁−1,𝑥𝑁

𝑥𝑘 − 𝑥𝑔
𝑇
𝑄𝑁 𝑥𝑘 − 𝑥𝑔 +

σ𝑘=0
𝑁−1 𝑥𝑘 − 𝑥𝑔

𝑇
𝑄(𝑥𝑘 − 𝑥𝑔) + 𝑢𝑘

𝑇𝑅𝑢𝑘
subject to: x0 − xs = 0

𝑥𝑘+1 − A𝑘𝑥𝑘 − 𝐵𝑘𝑢𝑘 = 0 ∀𝑘 ∈ [0,𝑁)

Direct Transcription QP (Taylor expansion)

While (not converged):

1) Compute Taylor Approximation

2) Take Gradient Step

3) Apply a line search (or trust 
region) to ensure descent on the 
original problem

Successive Convex Optimization

Fully Separable Across Time!
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ሚ𝑓 𝑥 |𝑥=𝑤

𝑓(𝑥)

𝑤

While (not converged):

1) Compute Taylor Approximation

2) Take Gradient Step

3) Make sure we didn’t go so far the 
approximation is invalid (line search 
or trust region)!

Model Predictive Control (MPC): 
Via Successive Convex Optimization

While (not converged):

1) Compute Taylor Approximation

2) Take Gradient Step

3) Apply a line search (or trust 
region) to ensure descent on the 
original problem

Successive Convex Optimization
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𝑓(𝑥)

𝑤 47

While (not converged):

1) Compute Taylor Approximation

2) Take Gradient Step

3) Make sure we didn’t go so far the 
approximation is invalid (line search 
or trust region)!

Model Predictive Control (MPC): 
Via Successive Convex Optimization

While (not converged):

1) Compute Taylor Approximation

2) Take Gradient Step

3) Apply a line search (or trust 
region) to ensure descent on the 
original problem

Successive Convex Optimization

Parallel Line Search Techniques
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While (not converged):

1) Compute Taylor Approximation

2) Take Gradient Step

3) Make sure we didn’t go so far the 
approximation is invalid (line search 
or trust region)!

Model Predictive Control (MPC): 
Via Successive Convex Optimization

While (not converged):

1) Compute Taylor Approximation

2) Take Gradient Step

3) Apply a line search (or trust 
region) to ensure descent on the 
original problem

Successive Convex Optimization
𝐺 𝐶𝑇

𝐶 0
−δZ
λ

=
𝑔
c

Solve the 
KKT 

System

Iterative Methods like the 
Preconditioned Conjugate Gradient 
Algorithm are Parallel Friendly

We can use the Symmetric 
Stair Preconditioner and 
the Schur Complement!
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We can solve the KKT system with a GPU-parallel-
friendly preconditioned iterative method 

Preconditioned Conjugate Gradient
r = γ − Sλ
෤𝒓, 𝒑 = Φ−1r
while r < ϵ

α = 𝜂 / pTSp, 𝜂 = rT ǁ𝑟
λ += αp, r −= αSp
ǁ𝑟 = Φ−1r
β = rT ǁ𝑟 / 𝜂
p = ǁ𝑟 + βp

Computationally 
dominated by matrix-

vector products!
(and reductions)
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And we can refactor it to make it more parallel!

Each Block-Row
is a mostly 

independent 
operation and 
you only ever 

have to copy to 
your neighbors!
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And we can refactor it to make it more parallel!
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MPCGPU: A 3-Step Method for GPU-Parallel-Friendly 
Direct Trajectory Optimization

54

While (not converged):

1) Compute Taylor Approximation

2) Take Gradient Step

3) Apply a line search (or trust 
region) to ensure descent on the 
original problem

Successive Convex Optimization



MPCGPU: A 3-Step Method for GPU-Parallel-Friendly 
Direct Trajectory Optimization
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While (not converged):

1) Compute Taylor Approximation

2) Take Gradient Step

3) Apply a line search (or trust 
region) to ensure descent on the 
original problem

Successive Convex Optimization



MPCGPU: A 3-Step Method for GPU-Parallel-Friendly 
Direct Trajectory Optimization
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MPCGPU: A 3-Step Method for GPU-Parallel-Friendly 
Direct Trajectory Optimization

57

MPCGPU: Successive Convex Optimization Optimized for MPC on the GPU!
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We then tested MPCGPU on a 5-point pick-and-place 
circuit in simulation…

59
github.com/A2R-Lab/MPCGPUImage Source: 

Crocoddyl Viewer

https://github.com/A2R-Lab/MPCGPU


… resulting in up to a 3.6x average speedup in 
linear system solve time …
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… resulting in up to a 3.6x average speedup in 
linear system solve time …
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… and a best case order-of-magnitude
speedup for the majority of solves!
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… and a best case order-of-magnitude
speedup for the majority of solves!
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… and a best case order-of-magnitude
speedup for the majority of solves!
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… and a best case order-of-magnitude
speedup for the majority of solves!
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>65% of GBD-PCG 
solves are ≥10x faster
than the fastest 
QDLDL solve

<10% of GBD-PCG 
solves are ≥2x slower,
and the slowest is 
2.5x slower, than the 
slowest QDLDL solve



MPCGPU scales to…
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MPCGPU scales to…
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Successive Convex Optimization



MPCGPU scales to 512 knot points at 1kHz and a per-
iteration rate of 4kHz for 128 knot points at 500Hz

68



69

We leverage the improved conditioning of 
the symmetric stair preconditioner to build a 

fast parallel PCG solver which provides up to a 
10x speedup for a majority of linear system 

solves and a 3.6x speedup on average

1

Through its GPU-first design MPCGPU 
scales to kilohertz control rates for NMPC 

with trajectories as long as 512 knot points

2

Warm-starting and Co-Design Matter!
3

MPCGPU: Real-Time Nonlinear Model 
Predictive Control through Preconditioned 

Conjugate Gradient on the GPU

Symmetric Stair Preconditioning
of Linear Systems for

Parallel Trajectory Optimization
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