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Rigid Body Dynamics Gradients are a bottleneck
for planning and control (e.g., nonlinear MPC)
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* Frequency scaling is
ending (CPUs aren’t
getting faster)

* Massive parallelism on
GPUs and FPGAs may be
a solution for hardware
acceleration

[Shao and Brooks “Synthesis Lectures on Computer Architecture” 2015]
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CPUs, GPUs, and FPGAs have fundamentally
different strengths and weaknesses
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Algorithmic Features CPU GPU FPGA
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Fine-Grained Parallelism - moderate| excellent

Structured Sparsity good moderate| excellent
Irregular Data Patterns moderate excellent
Sequential Dependencies | good good

Small Working Set Size | good excellent
I/0 Overhead excellent
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[S.M. Neuman et al. "Robomorphic Computing: A
Design Methodology for Domain-Specific Accelerators
Parameterized by Robot Morphology,” ASPLOS 2021]
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1. ASIC acceleration to improve Actively in progress

both latency and but/and our current code
coarse-grained parallelism can be found at:

http://bit.ly/fast-rbd-grad
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