
Application of Approximate Matrix Multiplication
to Neural Networks and Distributed SLAM

Brian Plancher*
Harvard University

Cambridge, Massachusetts

Lillian Pentecost*
Harvard University

Cambridge, Massachusetts

Camelia D. Brumar*
Worcester Polytechnic Institute

Worcester, Massachusetts

Saketh Rama*
Harvard University

Cambridge, Massachusetts

Iulian Brumar*
Harvard University

Cambridge, Massachusetts

David Brooks
Harvard University

Cambridge, Massachusetts

Abstract—Computational efficiency is a critical constraint for
a variety of cutting-edge real-time applications. In this work, we
identify an opportunity to speed up the end-to-end runtime of two
such compute bound applications by incorporating approximate
linear algebra techniques. Particularly, we apply approximate
matrix multiplication to artificial Neural Networks (NNs) for
image classification and to the robotics problem of Distributed
Simultaneous Localization and Mapping (DSLAM). Expanding
upon recent sampling-based Monte Carlo approximation strate-
gies for matrix multiplication, we develop updated theoretical
bounds, and an adaptive error prediction strategy. We then apply
these techniques in the context of NNs and DSLAM increasing
the speed of both applications by 15-20% while maintaining a
97% classification accuracy for NNs running on the MNIST
dataset and keeping the average robot position error under 1
meter (vs 0.32 meters for the exact solution). However, both
applications experience variance in their results. This suggests
that Monte Carlo matrix multiplication may be an effective
technique to reduce the memory and computational burden of
certain algorithms when used carefully, but more research is
needed before these techniques can be widely used in practice.

Index Terms—approximation, linear algebra, neural networks,
robotics, SLAM

I. INTRODUCTION

In the past few decades there has been a large body of
work focused on accelerating exact linear algebra kernels
in hardware, motivating a range of inventions from GPU
streaming multiprocessors to systolic arrays [1]. Since 2014,
the dramatic proliferation of machine learning methods, par-
ticularly deep learning, has further increased the demand for
efficient linear algebra operations while relaxing exactness
requirements relative to traditional consumers of linear algebra
in scientific computing [2]–[5].

Independently of trends in applied research, a surge of
interest in approximation as a fundamental property of com-
putational complexity has, in part, motivated a series of gen-
eral approximation algorithms for fundamental linear algebra
operations including matrix multiplication. One of the best
known such proposal employs Monte Carlo sampling with
replacement and offers asymptotic guarantees for the matrix
norm of the resulting computation [6]–[8].

*All authors have contributed equally and are ordered alphabetically.

We observe that both the application domains of deep
learning and robotics demand linear algebra operations but
also tolerate some error in their results. This work builds on
this intuition by applying and extending Monte Carlo meth-
ods for matrix multiplication to specific application domains
and evaluating the resulting impact on end-to-end application
speed and accuracy. Our applications of choice are neural net-
works for image classification and Distributed Simultaneous
Localization and Mapping (DSLAM) for robotics, both of
which rely heavily on matrix multiplications.

Focusing on matrix multiplication in particular, this work
empirically evaluates the tightness of bounds in the algorithm
for sampling with replacement, which is an attractive solution
due to previously-verified theoretical bounds [6]. We explore
the limitations of the existing algorithm, propose modifica-
tions, and develop a corresponding error prediction model
using computed error bounds. This version of Monte Carlo
matrix multiplication is then applied in the context of our
target applications in order to evaluate the practicality and
potential performance improvements of theoretical results for
interesting end-to-end, compute-constrained problems.

II. RELATED WORK

Simplified approaches to linear algebra can have a signifi-
cant impact on computational overhead and memory require-
ments for critical applications, and have been studied since
the inception of factor models in psychology [9], [10]. More
recently, a series of theoretical works have set compelling
bounds on Monte Carlo algorithms for a set of linear algebra
operations, including matrix multiplication, low-rank approxi-
mation, and matrix decomposition [6]–[8]. Similar randomized
algorithms have been proposed for low-rank matrix factoriza-
tions, such as singular value and QR decomposition [11].

Many alternate approaches to approximate matrix multipli-
cation exist. For example, one such proposal leverages Fast
Fourier Transforms (FFTs) and treats matrix multiplication as
a low-rank polynomial multiplication [12]. Another approach
is based on random projections [13]. Finally, another family
of approaches satisfies additional constraints, such as retaining
a subset of columns unchanged in the approximation, or by

weakening a full low-rank approximation to only be locally
low-rank over a matrix [14], [15].

This work focuses on the approximation of matrix multipli-
cation using Monte Carlo methods. Monte Carlo methods are
particularly appealing from a system performance perspective
due to the ability to approximate an output without having to
compute (or even fetch from main memory) the full input
matrices in the context of matrix multiplication. A paper
adopting a strategy similar to the one explored in this paper
characterizes the applicability of this to linear regression
directly [16] and similar approximation strategies have been
proposed for other areas of machine learning, such as kernel
methods [17] and clustering [18]–[21]. However, application-
focused studies in other domains are limited and little work
has been done to analyze the impact of Monte Carlo methods
on end-to-end application performance either in terms of
accuracy (as defined in a given domain) or measured run time
improvements. We address both of these issues in this work.

III. APPLICATION BACKGROUND

A. Neural Networks

Neural Networks (NNs) are becoming increasingly es-
tablished as a state-of-the-art approach for a multitude of
cutting-edge classification tasks, including object detection and
tracking, speech recognition, and translation [22]. It is well
known that NNs are reasonably fault-tolerant and resilient to
approximations such as reduced numerical precision, pruning,
and architectural faults (e.g., flipped bits in stored values)
[3], [4], [23], [24]. The computational workhorse of NNs
is matrix multiplication, and accelerating the execution of
NN inference by supporting faster matrix multiplication is an
incredibly fertile area of research [2], [22], [25]–[27]. Thus,
applying approximate matrix multiplication techniques for NN
inference is a promising prospect for reducing the overall
computational workload for critical applications.

B. Distributed Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is the
process by which a robot builds a map of its environment
while simultaneously localizing itself in this map [28], [29].
A common approach to computing the current belief of the
map and robot state is with an Extended Kalman Filter
(EKF) [30]. The EKF computes a linearization of both the
robot’s motion and sensor measurement, and then computes
the maximum likelihood estimate of the belief. This process
is repeated at discrete time steps as the robot moves through
the environment. As such, SLAM iteratively refines noisy
estimates of the map and robot location through future (noisy)
sensor readings.

Recently, Distributed Simultaneous Localization and Map-
ping (DSLAM) [31], [32] was proposed to speed up this
process by leveraging a swarm of N robots to collectively
complete this task over T timesteps. The DSLAM problem
considers the state vector X as the concatenation of the states
of all N robots x ∈ Rn whose motion is defined as f(·) and
the position of M landmarks l ∈ Rm in the environment that

are found with a sensor measurement function h(·). Similarly
it considers U as the concatenation of all control inputs u,
Y as the concatenation of all sensor readings y, and Σ as
the full covariance matrix between all the state and landmark
positions. It then computes the updated state Xt at time t as
shown in Algorithm 1 (where Q and R represent the process
and measurement noise respectively).

Algorithm 1 DSLAM
1: X0,Σ0 ← Xinit,Σinit

2: for i = 1 . . . T do
3: Xt|t−1 = f(Xt−1, Ut)

4: F = ∂f(Xt−1,Ut)
∂Xt−1

5: Σt|t−1 = FΣt−1F
T +Qt

6: yt = h(Xt−1)
7: yt|t−1 = h(Xt|t−1)

8: H = ∂h(Xt−1)
∂Xt−1

9: S = HΣt|t−1H
T +Rt

10: K = Σt|t−1H
TS−1

11: Xt = Xt|t−1 +K(yt − yt|t−1)
12: Σt = (I −KH)Σt|t−1
13: end for

Motion
Update

Measurement
Update

In the DSLAM algorithm, we note that the covariance
matrix Σ ∈ R(Nn+Mm)×(Nn+Mm) grows quadratically with
the number of, and state dimensions of, both the robots and
landmarks. Therefore, for large numbers of robots and/or
landmarks, and/or for more complex robots, there is ample
opportunity for approximation to increase the performance
of the algorithm by accelerating the large, computationally
intensive matrix multiplication operations.

IV. MONTE CARLO MATRIX MULTIPLICATION (MCMM)

A. Background

The basic cubic-time matrix multiplication algorithm for
P = AB = A × B produces each element in the output
matrix P as P j

i = Ai × Bj , where P j
i , Ai, and Bj denote

respectively element (i, j) of P , the i-th row of A, and the j-th
column of B. A variety of approximation strategies for matrix
multiplication reformulate matrix multiplication in terms of
outer products, as shown in Equation 1. Note that multiplying
Ai times Bi for a particular i, results in a partial result which
has the same dimensions as the final matrix P = A×B.

A×B =

n∑
i=0

AiBi (1)

Randomized algorithms sample these row-column pairs [11].
The sampling involves picking c columns of A and c rows of
B according to a random distribution. The matrices C and R
are then built with the c row-column pairs and regularized in
order to account for missing rows and columns as shown in
Equation 2.

Ct =
Ait

√
c ∗ pit

Rt =
Bit√
c ∗ pit

(2)

C and R are then multiplied together to produce the final
result. In this paper, we build on Monte Carlo Matrix Multi-
plication [6], a recently proposed algorithm that follows this
approach.

Most approximate computing proposals such as Loop Per-
foration [33], Task Skipping [34] or Approximate Task Mem-
oization [35] rely on profiling and program training of inputs
to empirically determine the overall program error when using
real test inputs. However, if the training inputs are not suffi-
ciently representative of real world cases, the approximation
mechanism might lead to higher unexpected errors.

MCMM, on the other hand, allows the user to determine
if the approximate matrix multiplication is suitable for the
problem encoded in the operand matrices without having to
run the full multiplication on training inputs and with strong
theoretical guarantees as defined in Equation 3.

‖AB − CR‖ = O

(
‖A‖ ∗ ‖B‖√

c

)
(3)

Importantly, c does not refer to a percentage of the row-column
pairs sampled from the input matrices A and B, but to the
absolute number. This means that if the matrices A and B are
large enough, even with a low sampling rate, the denominator
will be large, leading to a relatively low error bound. That said,
larger matricies will also have larger norms (in this work, all
matrix norms are Frobenius norms unless otherwise specified).

It is important to note that this bound only holds when
the sampling is done with replacement. Somewhat counter-
intuitively, this means that we may sample a particular row-
column pair multiple times and never sample others.

B. Limitations

Unfortunately, these guarantees are insufficient from an
application perspective for several reasons:

1) The provided error bound is absolute, not relative to the
ground truth. This means that we can bound the error to
a small absolute error but still have a very significant
relative error compared to the norm of the resulting
matrix, where the relative error bound is given by:

O

(
‖A‖ ∗ ‖B‖√
c ∗ ‖AB‖

)
(4)

2) The provided error bound is expressed using asymptotic
notation. This result is weaker than a hard error bound
curve depending on some feature of the operand matri-
ces, e.g., the matrix norms.

3) To take advantage of the performance advantage of
approximation while utilizing an error bound as a guide,
we want to compute a relative error bound without
requiring the exact result AB.

4) Sampling in [6] is performed with replacement with non-
uniform probabilities for each of the row-column pairs
of the input matrices, but the exact choice of weights is
completely left to the user.

C. Improved Error Prediction

We construct a model to predict the MCMM relative error
with high accuracy. We empirically show that the expression

‖A‖ ∗ ‖B‖√
c ∗ ‖AB‖

(5)

is highly correlated with the real relative error between the
exact matrix multiply and the MCMM solution:

‖AB − CR‖
‖AB‖

(6)

The asymptotic notation in Equation 4 can be expressed as,

‖AB − CR‖
‖AB‖

≤ factor ∗ ‖A‖ ∗ ‖B‖√
c ∗ ‖AB‖

which says that by multiplying the expression (Equation 4) by
a constant factor, the exact error will be bounded. Intuitively,
the norm of the approximate result CR should be similar to
the norm of AB, even though the individual elements might
differ. In Section V, we show that:

‖A‖ ∗ ‖B‖√
c ∗ ‖CR‖

(7)

is highly correlated with, and as such can be used to predict,
the real relative error (Equation 6).

D. Improved Sampling Methods

We propose a sampling strategy to enable highly predictable
errors across many example matrices. This allows for an
adaptive approach where MCMM is performed for error-
tolerant computations and approximation is avoided for less
resilient computations. The intuition for our strategy is that
if the norms of column Ai and row Bj are relatively small,
their multiplication will yield a small norm and have a smaller
impact in the final result. We assign probabilities:

pi =
wi∑n
j=1 wj

wi = ‖Ai‖ ∗ ‖Bi‖ (8)

to each of the row-column pairs. Section V demonstrates that
this approach yields higher accuracy than uniform sampling
and leads to more predictable error bounds using Equation 7.

V. HIGH-LEVEL MCMM EVALUATION

A. Methodology for local MCMM accuracy analysis

In order to analyze the local accuracy of different sampling
strategies and error prediction for MCMM, we test our im-
plementation on matrices from many different domains from
the Florida Sparse matrix library [36]. For each example,
we compute the multiplication of a given matrix A by the
transpose of A (AT).1

1The Florida Sparse Matrix repository does not give pairs of matrices
for each particular problem. Therefore, using this data alone may impose
limitations on the effectiveness of our strategy. However, we note that this
operation (C = ATA) occurs in many applications. For example, when a
matrix that needs to be inverted has more rows than columns, e.g. when
solving an over-determined system, multiplying AT by A results in an
invertible square (symmetric) matrix.

Fig. 1. Average error in output matrix for different sampling strategies over
all matrices. The x-axis represents the percentage of sampled row-columns,
and the y-axis is Equation 6.

We use a C++ MCMM implementation built with the Eigen
[37] library to perform the matrix-matrix multiplications for
selected matrices.2 These examples exhibit a total execution
time between 10ms and 500ms on an Intel® Core™ i5-
7440HQ CPU @ 2.80GHz.

B. Evaluation of sampling strategies

We empirically evaluate the usefulness of four different
sampling approaches for MCMM row-column sampling: with
vs. without replacement and with uniform weights (UW) vs.
non-uniform weights (NUW), as shown in Figure 1.

In almost all cases NUW + Replacement has the lowest
error. Interestingly this is the only strategy satisfying the
theoretical requirements described in Section IV. However,
sampling with replacement always results in an inherently
approximate MCMM as it may result in re-sampling particular
row-column pairs and never sampling others.

The UW + No Replacement strategy overcomes this limita-
tion for 100% sampling at the cost of robustness for sampling
lower than 80%. Unfortunately, this benefit is lost if weights
are non-uniform (NUW + No Replacement) as Equation 2
divides the partial product result by the probability of sampling
to account for potentially non-sampled row-column pairs,
which is useful only when we sample with replacement.

C. MCMM error prediction

A benefit of our approach is that we can tightly control
the error of each specific approximate computation due to
the theoretical guarantees of MCMM. We derive a model for
the predicted error by plotting the actual error against the
predicted error under the theoretical error bound (Equation 5)
and noticing a highly accurately linear fit to y = x. However,
as mentioned in Section IV, computing this bound requires

2The specific matrices used were: bp 0, orbitRaising 1, GD00 c,
fs 541 2, mbeacxc, oscil dcop 01, bfwa 398, bfwa 782, west 0381,
nos1, nos7, DK01r, GRE 1107,BCSSTK 10, BCSSTK 12,
BCSSTK 27, BCSSTM27, nnc1374, coater1, rail 1357,
model4, freeF lyingRobot 2, spaceStation 10, spaceStation 11,
spaceStation 12, mahindas, pores 2, lp ganges, fpga dcop 01,
rdb 1250, cz 1268

Fig. 2. The relation between the predicted MCMM relative error (Eq. 7) and
the real matrix multiply error (Eq. 6). Each point represents sampling 40%
of the row-column pairs of the Florida Sparse Matrices. We use least squares
(shown in red) to model the tight correlation between the Expression 6 and
the real matrix multiply error since replacing ||AB|| with ||CR|| requires
some correction of the error bound formula as described in Subsection IV-C.

computing the full AB matrix and is therefore impractical.
Instead, we examine the actual error against our improved
predicted error using the CR matrix in place of the AB
matrix (Equation 7). While this no longer fits the line y = x,
we found that when sampling with our improved sampling
method, NUW + Replacement, it did produce a predictable
trend, as shown in Figure 2. We fit a quadratic model to this
data (shown in red) and found the best least squares fit was:

0.01x2 + 0.6x+ 1.52 , where x =
‖A‖ ∗ ‖B‖√
c ∗ ‖CR‖

(9)

Equation 9 can be used to discard approximate matrix com-
putations that produce unacceptable predicted errors. Based on
this prediction formula, application developers can design an
adaptive algorithm that manipulates the percentage of sampled
data until the predicted error is below an acceptable threshold
using the approximate result CR.

VI. DOMAIN-SPECIFIC CASE STUDIES

A. Neural Network Inference

We apply the techniques discussed in Section V to two NNs
for the well-known task of optical digit recognition with the
MNIST dataset [38]. A specific bottleneck of NN execution is
fetching weight values from memory, and MCMM provides an
additional advantage of reducing overall memory bandwidth
requirements by requiring only a subset of values per layer,
thus reducing the working set size of the computation in
addition to enabling more efficient computation.

Table I gives the baseline parameters of the two pre-
trained NNs we consider. Both models approach state-of-
the-art accuracy (less than 2% baseline classification error)
and their weight matrices are relatively sparse (up to 90%
zero-valued). MNIST-FC is comprised of three fully-connected
layers with weight matrix sizes up to 1000×300. MNIST-CNN
is a LeNet5 model with two convolutional layers followed by
two fully-connected layers for final classification.

Fig. 3. Average image classification error for Fully-Connected (MNIST-FC,
left) and Convolutional (MNIST-CNN, right) NN layers and corresponding
rate of sampling. To maintain 97% classification accuracy, only the first
layer in MNIST-FC should be approximated (sample rate 76%), while both
convolutional layers of MNIST-CNN can be approximated (sample rate 82%).

MCMM is applied to batched inference for fully-connected
layers in MNIST-FC and sparsified convolutional layers in
MNIST-CNN. We vary the threshold against which Equation
9 is compared, employing MCMM with replacement for the
weighted sampling technique described in Section V when the
predicted error does not exceed the given threshold. We report
the average acceptable sampling rate per NN layer and the
resulting image classification error across the entire MNIST
test set for 100 trials per threshold value in Figure 3. Note that
100% sampling rate corresponds to no approximation being
conducted (i.e., if no acceptable sample rate under 100% is
determined, the calculation is performed exactly).

Layer 1 of MNIST-FC is the largest of the fully-connected
layers considered, and we see an initially gradual degradation
in the image classification accuracy at sample rates down to
about 65%. The abrupt degradation of image classification
accuracy towards random classification (90% error for 10
possible classifications) at lower sampling rates is charac-
teristic of the behavior of NNs under other approximation
schemes [4]. Reducing the number of required row-column
pairs for the largest FC layer of MNIST-FC to a sampling
rate of 76% would reduce the overall number of parameters
fetched from memory for a given inference by over 20% and
reduces the execution time by about 15-20% while maintaining
97% classification accuracy, which suggests that MCMM is
a compelling technique for reducing the computational and
memory bandwidth required for NN inference.

To validate the findings of Section V-C against the specific
matrix multiplication operations within the NNs, we observe
the discrepancies between the predicted error (Equation 4) and
the actual error (Equation 6) for a given bound threshold,
summarized in Figure 4. For both convolutional layers in
MNIST-CNN and for layers 2 and 3 in MNIST-FC, the
predicted error bounds are far too conservative compared with

TABLE I
BASELINE CONFIGURATION OF THE NNS AND THE MINIMUM POSSIBLE %

SAMPLE RATE THAT MAINTAINS 97% ACCURACY (‘SAMPLE RATE’).

Model Baseline Error Zero-Valued Sample Rate
MNIST-FC 1.4% 84.9% 76%

MNIST-CNN 0.8% 89.9% 82%

Fig. 4. We compare the actual error (approximate result vs. correct output)
and the predicted error (theoretical bound) for different NN layers as we vary
the bound threshold, as tested using Equation 9.

Fig. 5. Varying bound threshold leads to graceful degradation in end-to-end
image classification accuracy for both NNs considered.

the actual error. However, Layer 1 of MNIST-FC exhibits
very close agreement between the actual and predicted errors,
and we note that this is also the layer we found to be most
amenable to approximation.

The adaptive strategy for determining acceptable sample
rates per layer of the NN computation is particularly advan-
tageous because we find that the bound threshold across all
layers correlates to the actual application accuracy (i.e., image
classification error). Figure 5 explicitly compares the relation-
ship between the bound threshold and the image classification
error for both NNs. We note that compared to varying the
sampling rate in isolation, the adaptive strategy of imposing
a varying bound threshold leads to a gradual degradation
in image classification accuracy for both models considered.
This suggests that MCMM with error prediction offers a
direct trade-off between approximation and final application
accuracy, in addition to verifying that the bounds developed
in Section V-C can be an effective indicator of application
accuracy for this particular example.

B. DSLAM

Next, we apply the techniques discussed in Section V to the
DSLAM problem. For our experiments, we consider a two-
dimensional DSLAM environment with N = 25 simple point
robots whose state x is simply their 2D position (rx, ry) and
orientation θ under random motion. M = 20 landmarks are
used, which similarly have 2D positions. We assume that each
robot has a GPS sensor, which will relay a noisy reading of
the robot’s 2D position, and a monocular camera, which will
relay a noisy reading of the angle α and distance d to the

Fig. 6. Error in position estimations over time averaged over 10 trials for
DSLAM under various levels of approximation.

nearest landmark within range dmax meters and within offset
angle αmax or no reading at all. We apply T = 20 random
control steps to each robot with a total exploration time of 1
second in a grid world of size 20 by 20 meters starting from
a random initial configuration.

We ran 10 trials across 5 levels of approximation (no
approximation, 80% sampling, 60% sampling, 40% sampling,
20% sampling) using our improved sampling method, NUW +
Replacement. We find that by only approximating the two most
expensive steps in the computation (the matrix multiplications
involving Σ in lines 5 and 12 in Algorithm 1), we achieve
1.15X to 1.83X speedups in the end-to-end computation as
shown in Table II.

However, we find that the end-to-end accuracy of the
DSLAM algorithm degrades with increased sampling, as
shown in Figure 6. In some trials, the random nature of the
sampling may induce large errors in the computation. This is
best seen in the large jump in error in the 60% sampling case
(shown in teal) between 0.1 and 0.2 seconds. We also see this
in Figure 7, which shows the variance in output from 10 trials
at 80% sampling. Even for the most accurate trial, we find
sampling does not converge to the baseline solution and has
at least twice as much average error. However, with only 20%
sampling the increased error is still on average only on the
order of meters, which may acceptable for some applications.

Unfortunately, when attempting to apply the adaptive strat-
egy to DSLAM computations, the predicted errors were on
the order of 200%, which never leads to the use of our
approximation strategies. We believe this may be due to the
particular structure of the matrices used in this computation
and hope to further explore this issue in future work.

TABLE II
DSLAM EKF SPEEDUP UNDER VARIOUS LEVELS OF APPROXIMATION.

Percent Sampled Relative Speedup Std. Dev. of Speedup
Exact 1 N/A
80% 1.15 0.075
60% 1.33 0.12
40% 1.54 0.12
20% 1.83 0.25

Fig. 7. Average position error over time results per trial at 80% sampling
(red) compared to DSLAM without approximation (green).

VII. DISCUSSION AND FUTURE WORK

There is a large space to explore in considering the rela-
tionship between application error and theoretical guarantees
with approximate computation. In applying MCMM to NN
inference, we find certain operations within the NN are more
amenable to this form of approximation, though application
accuracy does degrade significantly below sampling rates of
about 75%. However, it is remarkable and encouraging that
actual error for the largest layer is similar to the MCMM
predicted error, which is given by the theoretical guarantees.

For the DSLAM use case, there are further research op-
portunities in terms of closing the gap between the predicted
error and the actual error. We note that this gap may be driven
by over-fitting in our predicted error model (Equation 9). We
leave for future work more general approaches to computing
predicted errors and those that leverage more heterogeneous
matrices.

We also leave for future work other linear algebra operations
amenable to approximation such as finding eigenvalues and
eigenvectors, solving systems of equations, and performing
low rank matrix approximation.

VIII. CONCLUSION

To achieve disciplined approximate computation in several
end-to-end applications, we divide the problem into two steps.
First, we expand on MCMM’s formal error bounds to provide
a fast relative error formula that can be used to predict the
error in the local approximate matrix multiplications. Second,
we characterize the relationship between the predictable local
error and the end-to-end application error. Using this approach,
we find promising results for DNNs and DSLAM that high-
light the need for future work developing error prediction
models to reduce the variance in the results.

ACKNOWLEDGMENTS

This work was partially supported by the Applications Driv-
ing Architectures (ADA) Research Center, a JUMP Center co-
sponsored by SRC and DARPA, the DARPA DSSoC program,
and the National Science Foundation Graduate Research Fel-
lowship (under grant DGE1745303). Any opinions, findings,
conclusions, or recommendations expressed in this material

are those of the authors and do not necessarily reflect those
of the funding organizations.

The authors would like to thank Moritz Graule and Patrick
Varin for help with DSLAM and are grateful to the anonymous
reviewers for their comments and suggestions.

REFERENCES

[1] H. Kung and C. E. Leiserson, “Systolic arrays (for vlsi),” in Sparse
Matrix Proceedings 1978, vol. 1. Society for Industrial and Applied
Mathematics, 1979, pp. 256–282.

[2] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin,
C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb,
T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann, C. R.
Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey,
A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew, A. Koch, N. Kumar,
S. Lacy, J. Laudon, J. Law, D. Le, C. Leary, Z. Liu, K. Lucke,
A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller, R. Na-
garajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick,
N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Steinberg, A. Swing,
M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan,
R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture,
ser. ISCA ’17. New York, NY, USA: ACM, 2017, pp. 1–12.

[3] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernandez-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-
power, highly-accurate deep neural network accelerators,” in ISCA, 2016.

[4] B. Reagen, L. Pentecost, U. Gupta, P. Whatmough, S. K. Lee, N. Mul-
holland, D. Brooks, and G.-Y. Wei, “Ares: A framework for quantifying
the resilience of deep neural networks.” in 2018 The 55th Annual Design
Automation Conference (DAC), June 2018.

[5] G. Li, S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and
S. W. Keckler, “Understanding error propagation in deep learning neural
network (dnn) accelerators and applications,” in SC, 2017.

[6] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast monte carlo al-
gorithms for matrices i: Approximating matrix multiplication,” SIAM
Journal on Computing, vol. 36, no. 1, pp. 132–157, 2006.

[7] ——, “Fast monte carlo algorithms for matrices ii: Computing a low-
rank approximation to a matrix,” SIAM Journal on computing, vol. 36,
no. 1, pp. 158–183, 2006.

[8] ——, “Fast monte carlo algorithms for matrices iii: Computing a
compressed approximate matrix decomposition,” SIAM Journal on Com-
puting, vol. 36, no. 1, pp. 184–206, 2006.

[9] A. S. Householder and G. Young, “Matrix approximation and latent
roots,” The American Mathematical Monthly, vol. 45, no. 3, pp. 165–
171, 1938.

[10] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[11] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with
randomness: Probabilistic algorithms for constructing approximate ma-
trix decompositions,” SIAM review, vol. 53, no. 2, pp. 217–288, 2011.

[12] R. Pagh, “Compressed matrix multiplication,” ACM Transactions on
Computation Theory (TOCT), vol. 5, no. 3, p. 9, 2013.

[13] T. Sarlos, “Improved approximation algorithms for large matrices
via random projections,” in Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on. IEEE, 2006, pp. 143–
152.

[14] G. H. Golub, A. Hoffman, and G. W. Stewart, “A generalization of
the eckart-young-mirsky matrix approximation theorem,” Linear Algebra
and its applications, vol. 88, pp. 317–327, 1987.

[15] J. Lee, S. Kim, G. Lebanon, and Y. Singer, “Local low-rank matrix
approximation,” in International conference on machine learning, 2013,
pp. 82–90.

[16] M. B. Cohen, Y. T. Lee, C. Musco, C. Musco, R. Peng, and A. Sidford,
“Uniform sampling for matrix approximation,” in Proceedings of the
2015 Conference on Innovations in Theoretical Computer Science.
ACM, 2015, pp. 181–190.

[17] A. J. Smola and B. Schölkopf, “Sparse greedy matrix approximation for
machine learning,” 2000.

[18] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang, “Matrix
approximation and projective clustering via volume sampling,” in Pro-
ceedings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm. Society for Industrial and Applied Mathematics, 2006, pp.
1117–1126.

[19] A. Deshpande and S. Vempala, “Adaptive sampling and fast low-
rank matrix approximation,” in Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques. Springer,
2006, pp. 292–303.

[20] A. Banerjee, I. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha, “A
generalized maximum entropy approach to bregman co-clustering and
matrix approximation,” Journal of Machine Learning Research, vol. 8,
no. Aug, pp. 1919–1986, 2007.

[21] M. B. Cohen, S. Elder, C. Musco, C. Musco, and M. Persu, “Dimen-
sionality reduction for k-means clustering and low rank approximation,”
in Proceedings of the forty-seventh annual ACM symposium on Theory
of computing. ACM, 2015, pp. 163–172.

[22] B. Reagen, R. Adolf, P. Whatmough, G.-Y. Wei, and D. Brooks,
“Deep learning for computer architects,” Morgan & Claypool Synthesis
Lectures on Computer Architecture, 2017.

[23] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” CoRR, vol. abs/1510.00149, 2015. [Online]. Available:
http://arxiv.org/abs/1510.00149

[24] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in Proceedings of the
32Nd International Conference on International Conference on Machine
Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, pp. 1737–1746.

[25] M. Adelman and M. Silberstein, “Faster neural network training with
approximate tensor operations,” arXiv preprint arXiv:1805.08079, 2018.

[26] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempit-
sky, “Speeding-up convolutional neural networks using fine-tuned cp-
decomposition,” arXiv preprint arXiv:1412.6553, 2014.

[27] Y. Guo, A. Yao, H. Zhao, and Y. Chen, “Network sketching: Exploiting
binary structure in deep cnns,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp. 5955–5963.

[28] B. Tim and H. Durrant-Whyte, “Simultaneous localization and mapping
(slam): Part i,” IEEE Robotics & Automation Magazine, vol. 13, no. 2,
pp. 99–110, 2006.

[29] ——, “Simultaneous localization and mapping (slam): Part ii,” IEEE
Robotics & Automation Magazine, vol. 13, no. 3, pp. 108–117, 2006.

[30] L. Ljung, “Asymptotic behavior of the extended kalman filter as a
parameter estimator for linear systems,” IEEE Transactions on Automatic
Control, vol. 24, no. 1, pp. 36–50, 1979.

[31] “Distributed simultaneous localization and mapping for mobile robot
networks via hybrid dynamic belief propagation,” International Journal
of Distributed Sensor Networks, vol. 13, no. 8, 2017.

[32] S. Thrun, “Simultaneous localization and mapping,” in Robotics and
cognitive approaches to spatial mapping. Springer, 2007, pp. 13–41.

[33] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and M. Rinard,
“Managing performance vs. accuracy trade-offs with loop perforation,”
in Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering. ACM,
2011, pp. 124–134.

[34] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant computa-
tions that discard tasks,” in Proceedings of the 20th annual international
conference on Supercomputing. ACM, 2006, pp. 324–334.

[35] I. Brumar, M. Casas, M. Moreto, M. Valero, and G. S. Sohi, “Atm:
Approximate task memoization in the runtime system,” in Parallel and
Distributed Processing Symposium (IPDPS), 2017 IEEE International.
IEEE, 2017, pp. 1140–1150.

[36] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

[37] G. Guennebaud, B. Jacob et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[38] Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,”
http://yann.lecun.com/exdb/mnist/.

