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Figure 1: My interdisciplinary research
is focused on computational co-design for
real-world robotics.

Intelligent field robots are a promising solution to many societal challenges
from combating epidemics, to scaling global supply chains, to providing
home health care to the elderly [1, 2, 3]. However, today, robots are mostly
limited to laboratory settings as they cannot react to dynamic, real-world
environments in real-time. As such, my core research question is: how
can we construct computational systems that enable robots to intelligently,
flexibility, and reliably operate in the field?

My research seeks to address this problem by developing, op-
timizing, implementing, and evaluating next-generation algo-
rithms and edge computational systems, at all scales, through
algorithm-hardware-software co-design. This approach requires de-
signing theoretically sound optimization- and learning-based algorithms (e.g., model predictive control) that run
at order-of-magnitude faster rates on edge computational hardware ranging from small-scale MCUs, to large-scale
GPUs and FPGAs, and even to custom ASICs and non von Neumann architectures (e.g., neuromorphic proces-
sors). As such, I work across the computational stack, designing algorithms, software systems, and computational
hardware at the intersection of robotics, optimization, computer architecture / systems, and machine learning.

In my two years at Barnard College, with the support of undergraduate and masters researchers,
and through collaborations across academia and industry, I have multiple tier 1 publications in
robotics (e.g., 6 ICRA), computer architecture / systems (e.g., DAC, ISCA), and computer science
education (e.g., SIGCSE-TS), and have raised over $800K from the National Science Foundation
to support my research agenda. Looking forward, I will build on these successes and develop new algorithms,
custom computation hardware, and open-source software to power dynamic and globally useful robots. And, I am
very excited by the opportunity to collaboratively build this interdisciplinary agenda at your college or university.

Prior Work – Accelerating Motion Planning and Control Across Scales

Model Predictive Control (MPC) transforms robot motion planning and control problems into (often nonlinear)
optimization problems that are repeatedly solved online at high rates. This approach has been shown to generate
highly dynamic and environment-aware motions for complex robots [4, 5, 6]. However, to enable its widespread
use, a fundamental question remains: how can we overcome MPC’s high computational complexity, while still
capturing complex dynamics and providing reliable convergence, for field robots of all scales?

Much of my prior research has focused on overcoming this challenge by designing theoretically sound algorithms
that leverage a combination of offline and online compute to be compressed onto MCUs on tiny robots, or paral-
lelized and accelerated on GPUs, FPGAs, or custom ASICs for large-scale robots (e.g., manipulators, quadrupeds).

This work has been complemented by efforts to develop accelerated middleware and benchmarking solutions, as
well as memory efficient edge reinforcement learning. Combined, these results enable all robots, regardless of their
size or connectivity, to execute intelligent planning and control at the edge.

Figure 2: Kuka manipulator us-
ing PDDP on the GPU [7].

Real-time Nonlinear MPC through GPU Accelerated Co-Design

My research has shown that developing theoretically sound algorithms that are
optimized to take advantage of the large-scale parallelism available on GPUs
can significantly improve the performance of nonlinear MPC. This has included
the development of novel preconditioners for provably better numerical condi-
tioning [8], as well as GPU-friendly variants of trajectory optimization solvers
ranging from Parallel Differential Dynamic Programming solvers [9, 7], to Conju-
gate Gradient-based Direct Methods [10], as well as key underlying kernels such
as Rigid Body Dynamics [11, 12]. Implementations of these co-designed algo-
rithms which both leverage these theoretical improvements, as well as expose and
exploit GPU-friendly sparsity and parallelism patterns, run at faster-than-state-
of-the-art rates for larger problems. This enables real-time, long-horizon optimal control, and has been validated
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on real robot hardware (Figure 2) [7]. This work has been supported by the National Science Foundation (NSF)
through my CRII and new CSSI grants. My leadership in this area has also spurred a number of current academic
collaborations to overcome bottleneck optimization-based computations across the robotics pipeline with GPUs, as
well as an active industry collaboration (and pending grant) with the Toyota Research Institute (TRI) to develop
novel GPU-accelerated risk-sensitive algorithms and solvers for autonomous driving at the edge of handling.

Toward Custom Hardware Accelerators for MPC – Rigid Body Dynamics Building Blocks

I have also shown that key bottleneck computations in the MPC pipeline can be further accelerated through the
use of FPGAs and custom ASICs, directly encoding the embodied algorithms’ structured sparsity and parallelism
patterns into computational hardware. For example, my collaborators and I have shown that custom hardware
accelerators for rigid body dynamics can provide as much as a 58x and 519x speedup over the CPU and GPU
respectively [11, 13, 14]. This line of work has also set the stage for the development of automated design flows,
interdisciplinary collaborations, and heterogeneous architectures that will enable a future of performant and useful
custom robotics chips [14, 15]. My core collaborators and I have also been at the forefront of this growing field of
custom robotics accelerators, building a vibrant and inclusive community around this effort, with special sessions
and workshop at major conferences (e.g., RSS 2022, MICRO 2022-24, DAC 2024, and ICRA 2025 under review).

Dynamic Tiny Robots through Real-Time MPC on MCUs

Figure 3: TinyMPC on an
MCU enables dynamic obsta-
cle avoidance [16].

Small, low-cost, globally-accessible robots face stringent power, memory, and com-
pute limitations, historically preventing the use of sophisticated algorithms like
MPC. As a step toward enabling dynamic planning and control for tiny robots, in
work that won the IEEE ICRA 2024 Best Paper Award in Automation, my collab-
orators and I showed that a combination of theoretical and computational advances
can compress MPC and enable it to run on the embedded computing devices (e.g.,
MCUs) found on such tiny robots. Using our TinyMPC algorithm and implementa-
tion, we demonstrated high-speed obstacle avoidance and trajectory tracking [16, 17]
(Figure 3). I’ve also taken steps toward overcoming the power limitations on such
systems, and have work under review using a combination of different edge systems to enable laser light to power
and give high-level commands to tiny robots in the field, enabling more sophisticated and longer-range deployments.

Accelerated Middleware and Benchmarking for Robotic System Architectures

End-to-end robotics applications can only take advantage of accelerated algorithms, like those presented in the
previous three lines of research, if they can be run on, and tested through, accelerated middleware and benchmark-
ing frameworks. In this research thrust, my collaborators and I have developed such benchmarking frameworks,
middleware interconnects, and runtime systems with adaptive parameter tuning. Importantly, all of these solutions
are natively integrated with ROS and ROS2. This enables, for example, end-to-end evaluations that were previ-
ously impossible, as much as 4.5x improvements in UAV mission time and energy, and nearly 25% improvements
in kernel runtimes when including data-transfer overheads [18, 19, 20, 21].

Accelerated and Memory Efficient Edge Reinforcement Learning

Machine learning-based robotics applications are increasing in prevalence and importance. Whether structured as
foundation-models, pixels-to-actions policies, or as learned hyperparameters or models for MPC, these algorithms
will need to run on the edge to support the next generation of field robots. This will be particularly challenging
for tiny robots which have limited memory and compute [22]. As a step toward alleviating these issues, I have
worked to reduce the challenging memory requirements and long runtimes of deep reinforcement learning training.
Through differential encodings, quantization, and vectorization, we have enabled as much as a 16.7× reduction in
memory and a 32% reduction in latency without impacting training performance [23, 24].

Promoting Responsible and Accessible Robotics

Throughout all of this research, I have worked to promote a responsible and accessible future for global robotics.
Beyond open-sourcing all of our software, and running a research lab that is majority undergraduate female, I have:
explored research to understand global diversity, equity, inclusion, and belonging in robotics and computing more
broadly [25, 26]; designed and documented new interdisciplinary, project-based, open-access courses that lower
the barrier to entry of cutting edge topics like robotics and machine learning [27, 28, 29, 30]; and collaboratively
promoted a sustainable and privacy preserving future for autonomous systems and edge computing [31, 32, 33, 34].
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Future Work – Optimizing Robotic Systems at All Scales

Figure 4: My future research expands the breadth and impact of compu-
tational co-design for real-world robotics.

At your college or university, I will pursue
interdisciplinary and collaborative robotics
research through co-design, building off of
my past efforts and extending them to en-
able increased edge autonomy for global
field robots (Figure 4).

Learned Predictive Control

Maximizing the benefits and minimizing
the weaknesses of algorithmic classes (e.g.,
learning, sampling, and optimization) will
be needed to develop high-performance,
generalizable, and explainable edge sys-
tems, especially where access to cloud com-
puting may be limited or unavailable. Towards this end, I am currently working on ML-guided, mixed-integer
solvers to enable real-time contact-implicit MPC, and GPU-batched trajectory optimization for sample-efficient
actor critic learning. I also have a collaborative proposal in preparation to develop generalizable drone swarm
controllers through provably convergent meta-learning. At your college or university, I will build on these efforts
and develop combined algorithmic approaches for efficient edge deployments on field robots.

The Hardware-Accelerated Edge Optimization Toolbox

With support from NSF through my new CSSI grant, and through collaboration with TRI, I will generalize our
prior GPU-accelerated work into a broadly applicable toolbox, explicitly consider uncertainty, adding APIs in
high level languages, and integrating our solvers with popular machine learning and core robotics frameworks. At
your college or university, I aim to also go beyond the GPU and develop the “one-stop-shop” edge optimization
toolbox that is broadly accessible, useful, and highly performant across a variety of hardware backends. In fact,
my collaborators and I are already developing FPGA-based workflows with the eventual aim of fabricating our
own custom robotics ASICs, and have an NSF proposal in preparation to support this work. I will also move
beyond our initial focus on MPC, to broader classes of both optimization and robotics problems, ideally though
many opportunities for collaboration at your college or university. Finally, I have also begun working with Intel
Neuromorphic Computing Labs (NCL) to develop next-generation optimization solvers using custom neuromorphic
processors for energy efficient operation.

Next Generation Intelligence for Tiny Robots

I will also build new systems and solutions to overcome the challenges of imbuing tiny robots with advanced
intelligence. I am currently extending our TinyMPC planning and control library into a full MCU robotics stack,
aiming for a perceptive tiny drone racing demonstration by the end of the academic year. I will also integrate the
aforementioned low-power neuromorphic chips onto such tiny drones though novel ASIC fabrication, and build
on our laser power and communication project to develop heterogeneous edge robotic systems that enable long
duration operation for swarms of tiny robots. Finally, I have a collaborative AFOSR proposal with Lockheed
Martin (LM) in preparation to support work on more advanced UxV edge control and communication.

Responsible and Accessible Robotics

At your college or university, I will research and develop new STEM learning models, courses, and outreach
programs to improve student access and outcomes in robotics, embedded machine learning (TinyML), and other
cutting-edge computing topics. With support from my new NSF CSSI and RAS-TEP grants, I will be developing a
series of open-source robotics courses and workshops. I have also been in talks with Adom Inc., to develop the first
remote-hands-on electronics course for AI accelerators and have a pending collaborative proposal for an EU COST
Action on TinyML. I will also continue to work to understand global DEIB in robotics and computing, as well
as promote a sustainable and privacy preserving future for edge computing. Finally, my work on tiny robots will
unlock order-of-magnitude cheaper edge intelligence, broadening access to autonomous robotics research globally.
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Current and Future Funding Sources

My research has been and will be supported by the NSF (GRFP, CRII, CSSI). I have also been in conversation
with, have submitted in the past, and am actively working on whitepapers and collaborative grants for multiple
DOD agencies (e.g., AFOSR, ONR, DIU, DARPA), as well as the DOE. I am also planning to continue to pursue
awards for early career research (e.g., NSF CAREER, ONR YIP, DARPA YFA, DOE ECRP). I have also assisted
multiple students in securing fellowships including the NSF GRFP, NDSEG, and NVIDIA Research, and anticipate
that my students will also win such awards. Finally, as demonstrated by my active and pending projects with TRI,
Intel NCL, LM, and Adom Inc., I work closely with industrial partners, and anticipate many future collaborative
and direct funding opportunities.
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