CS182: Artificial Intelligence

Lecture 12: Robot Motion Planning |

Brian Plancher

. . 03 150} {8
Harvard University e

Slides adapted from
Scott Kuindersma Fall 2018

Announcements

« Please submit your homework in the correct places — and you check
that your grade moves to Canvas when | announce grades are out. At
this point in the semester you will start losing points / getting Os if
you don’t do this correctly so please be careful...

« Midterm 1 is a week from Monday and covers L1-L11, P1-P3, S1-S6

« Next week’s section will become midterm review — time TBD most
likely later in the week / over the weekend and longer

« The Robotics material from today and Monday will be on Midterm 2
(next Wednesday's guest lecture will have a problem on P4) so come!

Announcements

« Please submit your homework in the correct places — and you check
that your grade moves to Canvas when | announce grades are out. At
this point in the semester you will start losing points / getting Os if
you don’t dogi's

. . Let me know if you have feedback
BUUBLEIUREE from class today and I can try to Rakiblakas

« Next wee incorporate that for Monday! ime TBD most
likely later in the week / over the weekend and longer

« The Robotics material from today and Monday will be on Midterm 2
(next Wednesday's guest lecture will have a problem on P4) so come!

Robotics is a BIG space

Robotics

Meche?nlsm e Mapplng &
Design Localization

o WgW oW Wow WeW Wo
! !

Hardware Focus<« @ciiqoiiiiad Bl 2= »Software Focus

Planning

Robotics is a BIG space

Robotics

Mechanism Mapping &

: Perception oy Plannin
Design P Localization 8

- -
| o™ "o™ "o

I

Hardware Focus<« @ciiqoiiiiad Bl 2= »Software Focus

Mechanism designers create new robots and
actuators MIT 2.74

Mechanism designers create new robots and
actuators

T
WYSS > INSTITUTE

7~

Robotics is a BIG space

Robotics

Mechanism
Design

Hardware Focus<« @ciiqoiiiiad Bl 2= »Software Focus

Perception

Mapping &

T Plannin
Localization &

WO Wo™ We

I

Sensor designers try to find new ways to collect data
about the world around the robot

Sensor designers try to find new ways to collect data
about the world around the robot

3D Reconstruction

http://www.gelsight.com/

Robotics is a BIG space

Mechz?nlsm e Mapplng &
Design Localization

\

Planning

, @
I @ I
Hardware Focus<« @ciiqoiiiiad Bl 2= »Software Focus

Perception is the processing of sensor data to
understand the world around the robot

Fig. 7: PowderSkier (top lft) mean shifted (top right) with and
clustered (bottom left) with (h,,h,, M) = (12,8,20) and post CS 283
processed (bottom right).

Perception is the processing of sensor data to
understand the world around the robot

Human captions from the training set

A cute litle
drawn on a sandy

walking next to a
on iop of a

& large brown next to a
small looking out a window.

Robotics is a BIG space

Robotics

Mechanism Mapping &

: Perception oy Plannin
Design P Localization 8

L\
\

!

Hardware Focus<« @ciiqoiiiiad Bl 2= »Software Focus

Mapping & Localization is the process of using sensor data
to understand where a robot is in the world

Mapping & Localization is the process of using sensor data
to understand where a robot is in the world

Robotics is a

BIG space

Robotics

\

Mechanism
Design

Perception

J

Mapping &
Localization

-
\ @

!

Hardware Focus

Planning

Computer Hardware Software Focus

o Planning is the process of computing an action plan for a
robot based on the previously computed information

Fig. 3. Collision-free quadrotor trajectory computed by constrained UDP.

Robotics is a BIG space

Robotics

Mechanism Mapping &

. Perception o Plannin Control
Design P Localization 8

\ }
I I

Hardware Focus<« @ciiqoiiiiad Bl 2= »Software Focus

©® Control is the process of executing a plan in the real world

sy

) |

-

92158 05/06/2015 UTC

©® Control is the process of executing a plan in the real world

Robotics is a BIG space

Robotics

Mechanism
Design

Perception

Mapping &
Localization

Planning

Computer Hardware Designers are coming up with new
custom chips to deliver real time low power performance

http://navion.mit.edu

A. Suleiman, Z. Zhang, L. Carlone,

S. Karaman, V. Sze, “Navion: A Fully
Integrated Energy-Efficient Visual-
Inertial Odometry Accelerator for
Autonomous Navigation of Nano Drones,”
IEEE Symposium on VLSI Circuits (VLSI-
Circuits), June 2018.

Z. Zhang*, A. Suleiman*, L. Carlone, V. Sze,
S. Karaman, “Visual-Inertial Odometry on
Chip: An Algorithm-and-Hardware Co-
design Approach,” Robotics: Science and
Systems (RSS), July 2017.

Computer Hardware Designers are coming up with new
custom chips to deliver real time low power performance

Platform Xeon ARM Navion Navion
(E5-2667) | (Cortex A15)| (Peak w/ (Real-time w/
Max Config) | Optimized Config)

Trajectory Error (%) 0.22% 0.28% 0.27%
Camera rate (fps) 63 19 71 20
Keyframe rate (fps) 12 2 19 5
Average Power (W) 27.9 2.4 0.024 0.002
Energy (mJ/KF) 3,638 1,573 23 0.7

CS 14x
CS 24x

"Navion Energy:
684x or 2,247x less than embedded ARM CPU

. 1,582x or 5,197x less than server Xeon CPU

Our Focus for today: Robot Motion Planning

Robotics

Mechz?nlsm e Mapplng &
Design Localization

__Q}\.‘e
I

Planning

5

I

Hardware Focus<« @ciiqoiiiiad Bl 2= »Software Focus

Our Focus for today: Robot Motion Planning

« How do we plan motions in high-dimensional continuous spaces?
« Why planning (and not policies)?
* Plans are often cheaper to compute than policies

» Robot operation often a series of self-contained tasks
that can be formulated as independent planning problems

Our Focus for today: Robot Motion Planning

* How do we plan motions in high-dimensional continuous spaces?
« Why planning (and not policies)?
» Plans are often cheaper to compute than policies

» Robot operation often a series of self-contained tasks
that can be formulated as independent planning problems

« Example: pick up the ball and put it in the bin

Our Focus for today: Robot Motion Planning

* How do we plan motions in high-dimensional continuous spaces?
« Why planning (and not policies)?
» Plans are often cheaper to compute than policies

» Robot operation often a series of self-contained tasks
that can be formulated as independent planning problems

« Example: pick up the ball and put it in the bin

* |f we can come up with a good representation
of states, actions, transition model, etc. then
we can simply search that space for a plan!

Our Focus for today: Robot Motion Planning

* How do we plan motions in high-dimensional continuous spaces?
« Why planning (and not policies)?
» Plans are often cheaper to compute than policies

» Robot operation often a series of self-contained tasks
that can be formulated as independent planning problems

« Example: pick up the ball and put it in the bin

* |f we can come up with a good representation
of states, actions, transition model, etc. then
we can simply search that space for a plan!

But what kind of space
should we search in?

Spaces and Transformations

* Task space: the 3D workspace of the robot

e E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

Spaces and Transformations

* Task space: the 3D workspace of the robot

e E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

* Configuration space: the n-dimensional
space of joint angles + robot world position

* Vector ¢ € R"

Spaces and Transformations

Task space: the 3D workspace of the robot

* E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

Configuration space: the n-dimensional
space of joint angles + robot world position

* Vector g € R"

Forward kinematics: maps g to outputs in
task space (e.g. hand position)

Inverse kinematics: maps task space poses
to configuration space

Spaces and Transformations

Task space: the 3D workspace of the robot

* E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

Configuration space: the n-dimensional
space of joint angles + robot world position

* Vector g € R"

Forward kinematics: maps g to outputs in
task space (e.g. hand position)

Inverse kinematics: maps task space poses
to configuration space

Q: Are forward and

inverse kinematics
unique?

Spaces and Transformations

Task space: the 3D workspace of the robot

* E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

Configuration space: the n-dimensional
space of joint angles + robot world position

* Vector g € R"

Forward kinematics: maps g to outputs in
task space (e.g. hand position)

Inverse kinematics: maps task space poses
to configuration space

- Insight: mapping
task space
obstacles and goals
into configuration

space turns this into
a problem of
planning a path
for a single point

Configuration Space

Q: What would the
configuration space look like
for this robot?

Configuration Space

Configuration Space

Q: What about this

square robot?

Configuration Space

Well for the Square
robot the obstacle
clearance depends on
rotation too!
Configuration space is
3-dimensional (X, ,
rotation)

Configuration Space

- Consider a simple 2-link robot arm in
the task space (x,y) shown on the right.

- How could we instead think of the
configuration space? What would
uniquely determine the end effector
position?

Initial

Workspace

Configuration Space

- Consider a simple 2-link robot arm in
the task space (x,y) shown on the right.

- How could we instead think of the
configuration space? What would
uniquely determine the end effector
position?

- Well if we consider the two joint angles
of the arm we can uniquely determine
the position of the end-effector so lets
make our configuration space (64, 0,)

Initial

Workspace

Configuration Space

Inltlal

GOEL(

Hmmm this is

getting complex
quite fast...

Workspace Configuration space

How to use configuration space in practice

If we map the obstacles into configuration space we
can check whether the configuration point, g, is in an j e
obstacle and we have a unique plan for the robot b L{
* Problem: mapping obstacles into configuration Gos
space is hard :W O

How to use configuration space in practice

If we map the obstacles into configuration space we

can check whether the configuration point, g, isin an e
obstacle and we have a unique plan for the robot b r

* Problem: mapping obstacles into configuration Gos
space is hard :Iw -
Better approach: use forward kinematics to check q/

task space obstacle collisions!

How to use configuration space in practice

If we map the obstacles into configuration space we

can check whether the configuration point, g, isin an e
obstacle and we have a unique plan for the robot b r

* Problem: mapping obstacles into configuration Gos
space is hard :Iw -
Better approach: use forward kinematics to check q/

task space obstacle collisions!

* No free lunch — Now each collision check
requires full kinematics and not a simple lookup Y/ l
L

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

Goal: Find shortest collision-free path
from configuration A to B

States: configurations g € R~%0
Actions: Aq
Transition: ¢ < g+ Agq

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

i ..&

Goal: Find shortest collision-free path

from configuration A to B (2 ankles + 2 knees + 2

States: configurations g € R™~2¢ hips + 2 shoulders + 2 Q
elbows + 4 fingers + pose
of com) = ~20 variables |

)

Actions: Aq

)
-

Transition: ¢ < g+ Agq

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

Goal: Find shortest collision-free path from configuration A to B

States: configurations g € R?°? Actions: Aq Transition: ¢’ < ¢+ Ag

If we discretize states and actions (e.g., 10

positions per joint) can we use a graph search
algorithm like A*?

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

Goal: Find shortest collision-free path from configuration A to B

States: configurations g € R?°? Actions: Aq Transition: ¢’ < ¢+ Ag

If we discretize states and actions (e.g., 10
positions per joint) can we use a graph search
algorithm like A*?

Sure but: |S| — |A| — 1020

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

Goal: Find shortest collision-free path from configuration A to B

States: configurations g € R?°? Actions: Aq Transition: ¢’ < ¢+ Ag

If we discretize states and actions (e.g., 10
positions per joint) can we use a graph search
algorithm like A*?

Sure but: |S| — |A| — 1020 . '.'{';:_ |
...curse of dimensionality! ~

A Naive Random Approach

Well if we can’t explore the whole graph at once
what if we incrementally build up a graph of
reachable configurations?

A Naive Random Approach

Well if we can’t explore the whole graph at once
what if we incrementally build up a graph of
reachable configurations?

Algorithm (input: So, Sgoal, initial state graph G)
* Pickarandom state s € G
* Apply random action a
e Add resulting state s’to G
* Repeat until G has a path from So to Sgoar

A Naive Random Approach

Well if we can’t explore the whole graph at once
what if we incrementally build up a graph of
reachable configurations?

Algorithm (input: So, Sgoal, initial state graph G)
* Pickarandom state s € G
* Apply random action a
e Add resulting state s’to G
* Repeat until G has a path from So to Sgoar

Probabilistically
complete: As iterations
go to infinity, probability
that G contains a
solution goes to 1!

A Naive Random Approach

Well if we can’t explore the whole graph at once
what if we incrementally build up a graph of
reachable configurations?

Probabilistically
complete: As iterations
go to infinity, probability
that G contains a
Algorithm (input: So, Sgoal, initial state graph G) solution goes to 1!

* Pickarandom states € G

 Apply random action a
e Add resulting state s’to G Q: What's the

* Repeat until G has a path from So to Sgoal problem with
this?

Naive Action Sampling

® Sgoal

Lots of samples close to your initial state —> slow!

Rapidly Exploring Random Trees

Consider the following tweak to the naive approach
called Rapidly Exploring Random Trees (RRTs)
[Lavalle & Kuffner]

Algorithm (input: So, Sgoal, initial state tree T)
e Sample states s € S = R? until sis collision-free
* Find closest state Sc € T
* Extend Sctoward s
e Add resulting state s’to T
e Repeat until T contains a path from So to Sgoal

Rapidly Exploring Random Trees

Consider the following tweak to the naive approach
called Rapidly Exploring Random Trees (RRTs)
[Lavalle & Kuffner]

Algorithm (input: So, Sgoal, initial state tree T)

Sample states s € S = R?% until sis collision-free
Find closest state Sc € T

Extend Sc toward s

Add resulting state s'to T

Repeat until T contains a path from So to Sgoar

45 1terasions

Rapidly Exploring Random Trees

Consider the following tweak to the naive approach
called Rapidly Exploring Random Trees (RRTs)
[Lavalle & Kuffner]

Algorithm (input: So, Sgoal, initial state tree T) AT T _
- Sample states S € S = R0 until siis collision-free | sy ¥ oS8 =0 rta Kede
* Find closest state Sc € T . %fé : % AR
* Extend Sctoward s
e Add resulting state s’to T
e Repeat until T contains a path from So to Sgoal 2345 iterations

Randomness encourages exploration

Key idea: uniform random sampling in configuration space is
actually a heuristic that encourages exploration!

To see this we use Voronoi regions
Def: Voronoi region is the set of points in space that are closest to a
particular node in the tree:

Randomness encourages exploration

Randomness encourages exploration

Randomness encourages exploration

Randomness encourages exploration

Randomness encourages exploration

Rapidly Exploring Random Trees

® Sgoal

Algorithm (input: So, Sgoal, initial
state tree T)
e Sample statess € S = R%0
until s is collision-free
* Find closest state Sc € T
* Extend sctoward s
* Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal

Rapidly Exploring Random Trees

® Sgoal

Algorithm (input: So, Sgoal, initial
state tree T)
 Sample statess € S = R%
until s is collision-free
 Find closest state sc € T
* Extend sctoward s
* Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal

Rapidly Exploring Random Trees

® Sgoal

Algorithm (input: So, Sgoal, initial
state tree T)
e Sample statess €S = R%
until s is collision-free
* Find closest state sc € T
* Extend sctoward s
 Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal

Rapidly Exploring Random Trees

® Sgoal

Algorithm (input: So, Sgoal, initial
state tree T)
 Sample statess € S = R%
until s is collision-free
 Find closest state sc € T
* Extend sctoward s
* Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal

Rapidly Exploring Random Trees

Algorithm (input: So, Sgoal, initial
state tree T)

Sample states s € S = R?0
until s is collision-free
Find closest state sc € T
Extend Sc toward s

Add resulting state s'to T
Repeat until T contains a
path from So to Sgoal

® Sgoal

Se

Rapidly Exploring Random Trees

Algorithm (input: So, Sgoal, initial
state tree T)
e Sample statess €S = R%
until s is collision-free
* Find closest state sc € T
* Extend sctoward s
 Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal

® Sgoal

Se

Uniform Sampling

Algorithm (input: So, Sgoal, initial
state tree T)
e Sample statess €S = R%
until s is collision-free
 Find closest state sc € T
 Extend Sctoward s
* Addresulting state S’to T
* Repeat until T contains a
path from So to Sgoal

® Sgoal

Extend distance trades
off sample efficiency
with computational
efficiency

Uniform Sampling

Properties of RRT

Key idea: random sampling will naturally reduce the size of Voronoi regions,
roughly prioritized by region size encouraging exploration

Properties of RRT

Key idea: random sampling will naturally reduce the size of Voronoi regions,
roughly prioritized by region size encouraging exploration

RRT is probabilistically complete!
* |f there’s a solution it will find it eventually
e Can still be slow for some problems, but it is faster than naive action

sampling approach

Properties of RRT

Key idea: random sampling will naturally reduce the size of Voronoi regions,
roughly prioritized by region size encouraging exploration

RRT is probabilistically complete!
e |Ifthere’s a solution it will find it eventually
* Can still be slow for some problems, but it is faster than naive action

sampling approach Q- Is this

algorithm
optimal?

Properties of RRT

Key idea: random sampling will naturally reduce the size of Voronoi regions,
roughly prioritized by region size encouraging exploration

RRT is probabilistically complete!
* |f there’s a solution it will find it eventually
e Can still be slow for some problems, but it is faster than naive action

sampling approach

Not optimal (cost of paths are not considered)
* Thisis an example of “feasible motion planning”: find a path

Rapidly Exploring Random Trees — Variants

(input: So, Sgoal, initial state tree T)
e Sample states s € S = R% until sis collision-free
* Find closest state sc € T
 Extend Sctoward s
 Add resulting state s'to T
e Repeat until T contains a path from So to Sgoal

Rapidly Exploring Random Trees — Variants

Rapidly Exploring Random Trees — Variants

Rapidly Exploring Random Trees — Variants

Goal Directed Sampling (input: So, Sgoal, initial state tree T)
e Sample states s € S = R?% until sis collision-free but with
probability p sample the goal instead of a random point
 Find closest state sc € T
 Extend Sctoward s
* Addresulting state S’to T
e Repeat until T contains a path from So to Sgoal

Intuition: instead of “stumbling” upon the solution, bias

the tree growth in the goal direction

Rapidly Exploring Random Trees — Variants

Rapidly Exploring Random Trees — Variants

’ 4| | 4 00:01.80 =i

Rapidly Exploring Random Trees — Variants

Rapidly Exploring Random Trees — Variants

> 4 I 000577 Y

Rapidly Exploring Random Trees — Variants

Bidirectional RRT (input: So, Sgoal, initial state trees T1, 12)
e Sample states s € S = R?% until sis collision-free
* Find closest state S¢c € T+
 Extend Sctoward s
e Add resulting state s’to T+

Intuition: search from one direction is sometimes easier than the other

Rapidly Exploring Random Trees — Variants

Bidirectional RRT (input: So, Sgoal, initial state trees T1, T2)
e Sample states s € S = R?% until sis collision-free
* Find closest state S¢c € T+
* Extend sctoward s .
e Add resulting state s’to T+
* Find closest state sc2 € T2to s’
* Extend sc2toward s’
e Add resulting state s’ to T> S
 If s” ==s’and return a path from So to Sgoal

* Else Swap(T, T>)

Intuition: search from one direction is sometimes easier than the other

Rapidly Exploring Random Trees — Variants

Bidirectional RRT (input: So, Sgoa, initial state trees T1, 12)
e Sample states s € S = R?% until sis collision-free
* Find closest state s¢c € T+
 Extend Sctoward s .
e Add resulting state s’to T+
* Find closest state Sc2 € T2to s’
* Extend sc2toward s’
e Add resulting state s’ to T> e
 If s” ==s’and return a path from So to Sgoal
e Else OYCT o JEREME PR Can also “balance” trees by swapping T+, T2 based on size

Intuition: search from one direction is sometimes easier than the other

RRT often works really well in practice

RRT often works really well in practice

Sometimes Paths are Weird

What if we search the same state space
repeatedly?

RRT (a “ ” algorithm) would become very inefficient as we
would “forget” all of the possible connections we learned in the
previous iteration

What if we search the same state space
repeatedly?

RRT (a “ ” algorithm) would become very inefficient as we
would “forget” all of the possible connections we learned in the
previous iteration

What if instead of building a tree every time we want to move, we
build a reusable graph G of sampled states?

What if we search the same state space
repeatedly?

RRT (a “single-query” algorithm) would become very inefficient as we
would “forget” all of the possible connections we learned in the
previous iteration

What if instead of building a tree every time we want to move, we
build a reusable graph G of sampled states?

This “multi-query” approach is called Probabilistic Roadmaps (PRMs)

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Free/feasible space

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Configurations are sampled by picking coordinates at random

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Sampled configurations are tested for collision

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

The collision-free configurations are retained as milestones

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Each milestone is linked by straight paths to its nearest neighbors

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

The collision-free links are retained as local paths to form the PRM

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 2: Online connect the start and goal nodes and run graph search

The start and goal configurations are included as milestones

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 2: Online connect the start and goal nodes and run graph search

‘The PRM is searched for a path from s to g

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 2: Online connect the start and goal nodes and run graph search

‘The PRM is searched for a path from s to g

Q: Is this
optimal?
Is this

complete?

PRM Considerations

The PRM is searched for a path froms to g

What if it fails?

* Maybe the roadmap was not
adequate

* Could spend more time in the
sampling/graph-building phase
 Could do another sampling phase

and reuse G

 Sampling and query phases don’t
have to be executed sequentially

PRM Considerations

The PRM is searched for a path froms to g

What if it fails?

* Maybe the roadmap was not
adequate

* Could spend more time in the
sampling/graph-building phase
 Could do another sampling phase

d G
and reuse Inherent tradeoff between

 Sampling and query phases don’t
have to be executed sequentially

offline and online
computational effort!

Challenges with RRTs & PRMs

1. Sampling effectively is hard

Sometimes uniform coverage of the state space isn’t what we
want (e.g., if there are many unreachable regions)

Challenges with RRTs & PRMs

1. Sampling effectively is hard

Sometimes uniform coverage of the state space isn’t what we
want (e.g., if there are many unreachable regions)

2. Connecting neighboring points can get complicated

Remember from earlier we need to use forward kinematics to
check task space obstacle collisions! And complex geometries
make this even harder!

Challenges with RRTs & PRMs

1. Sampling effectively is hard

 Sometimes uniform coverage of the state space isn’t what we
want (e.g., if there are many unreachable regions)

2. Connecting neighboring points can get complicated

e Remember from earlier we need to use forward kinematics to
check task space obstacle collisions! And complex geometries
make this even harder!

* If you can’t simply draw straight lines between sample
configurations, this step could involve a whole other optimization!

Solving part of the collision checking problem
will get you your own startup!

£

DUKE ROBOTICS

Robot Motion Planning on a Chip

- Duk
¥ e
‘7 DUKE
® COMPUTER ELECTRICAL
& COMPUTER
SCIENCE ENGINEERING

Solving part of the collision checking problem
will get you your own startup!

£

DUKE ROBOTICS

Robot Motion Planning on a Chip

- Duk
¥ e
‘7 DUKE
® COMPUTER ELECTRICAL
& COMPUTER
SCIENCE ENGINEERING

Summary

1. Policies are not feasible for most robots, so we plan instead

2. Robot planning usually involves thinking about both task and
configuration spaces

3. RRTs and PRMs: powerful tools based on very simple ideas
* Probabilistically complete

 Hundreds of papers introducing variants and
improvements to the basic idea

* Single-query (RRT) vs. Multi-query (PRM)

4. For many real problems, collision checking can be expensive

CS182: Artificial Intelligence

Lecture 13: Robot Motion Planning Il

Brian Plancher

. . 03 150} {8
Harvard University e

Slides adapted from
Scott Kuindersma Fall 2018

Announcements

« Midterm 1isin 1 week (10/29) during class in the normal classroom
« Covers L1-L11, P1-P3, S1-S6
- Midterm review (no section this week)
e Tuesday 4:30-6:30 SC Hall E
« Sunday 12:00-2:00 in Pierce 301

« If you have an AEOQ letter for extra time or have a conflict with the
midterm you need to let us know today so we can ensure that we
figure out appropriate accommodations!

« The Robotics material is on midterm 2 and Wednesday's guest lecture
will have a problem on P4 so come!

Final Project Information is on Canvas!

Aspect Deadline
5% DProject Proposal 11/12, 11:59 PM
5% Status Update 11/26,11:59 PM
Posters to Printer 12/7,7:00 AM

5%
Poster Presentations 12/11, 12:00PM-3:00PM

80% Final Project Report 12/18, 11:59 PM

Final Project Information is on Canvas!

e Proposal —5%
« Describe the problem
« ldentify the course related topics (aka what algorithms)
 List your intended experiments
« List papers / resources / outside code you intend to integrate with
« How are you dividing the work?

« Think of this as the first sections of your paper (abstract, background,
motivation, related work)

« Update —5%
o Poster - 5%
« Report and Code —85%

Final Project Information is on Canvas!

Proposal — 5%
Update — 5%
« How are you addressing your proposal feedback?
« How have things been going? Any changes from the proposal?

Poster — 5%
Report and Code — 85%

Final Project Information is on Canvas!

« Think of it as a way to walk the course staff through your coming paper
« Algorithms explained, Graphs of experiments, Future work, etc.

« Last chance to get feedback from the course staff and make sure you are on
the right track for your final paper

 Posters must be sent to MCB by 7am on Friday Dec 7t. Hard deadline.
« Note: Midterm 2 is Dec 5t and presentation is Tuesday Dec 11t
« Make sure to include all sections in the template (but can make prettier)

Final Project Information is on Canvas!

Proposal — 5%
Update — 5%
Poster — 5%

Report and Code — 85%

« The bulk of your grade

« Think of it as a full research paper
« Abstract, Background, Motivation, Related Work from proposal
« Algorithms explained, Graphs of experiments from Poster
« Wrapped up in a coherent paper

« Your code needs to work but the VAST MAJORITY of your grade is based on
your paper so make sure you have Al contributions written up

From last time: Robotics is a BIG space

Robotics

Mechz?nlsm e Mapplng &
Design Localization

__Q}\.‘e
I

Planning

I

Hardware Focus<« @ciiqoiiiiad Bl 2= »Software Focus

From last time: Spaces and Transformations

* Task space: the 3D workspace of the robot

e E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

* Configuration space: the n-dimensional
space of joint angles + robot world position

* Vector g € R"

* Forward kinematics: maps g to outputs in
task space (e.g. hand position)

* Inverse kinematics: maps task space poses
to configuration space

= &

Initial

Wo

rkspace

l /.
Initial /|

4

From last time: RRTs and PRMs

Single-query (RRT) vs. Multi-query (PRM)
Probabilistically complete
Computes feasible paths

Hundreds of papers introducing variants

The PRM is searched for a path from s to g

Y~

\

<

45 1terations

From last time: RRTs and PRMs [l | ol

Optimal! checking
(Unless infinite can be
Single-query (RRT) vs. Multi-query (PRM) samples PRM) expensive!

Probabilistically complete

Computes feasible paths

Hundreds of papers introducing variants

The PRM is searched for a path from s to g

45 1terations

From last time: RRTs in action

® Sgoal

Algorithm (input: So, Sgoal, initial
state tree T)
e Sample statess € S = R%0
until s is collision-free
* Find closest state Sc € T
* Extend sctoward s
* Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal

From last time: RRTs in action

® Sgoal

Algorithm (input: So, Sgoal, initial
state tree T)
 Sample statess € S = R%
until s is collision-free
 Find closest state sc € T
* Extend sctoward s
* Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal

From last time: RRTs in action

® Sgoal

Algorithm (input: So, Sgoal, initial
state tree T)
e Sample statess €S = R%
until s is collision-free
* Find closest state sc € T
* Extend sctoward s
 Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal

From last time: RRTs in action

® Sgoal

Algorithm (input: So, Sgoal, initial
state tree T)
 Sample statess € S = R%
until s is collision-free
 Find closest state sc € T
* Extend sctoward s
* Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal

From last time: RRTs in action

Algorithm (input: So, Sgoal, initial
state tree T)

Sample states s € S = R?0
until s is collision-free
Find closest state sc € T
Extend Sc toward s

Add resulting state s'to T
Repeat until T contains a
path from So to Sgoal

® Sgoal

Se

From last time: RRTs in action

Algorithm (input: So, Sgoal, initial
state tree T)
e Sample statess €S = R%
until s is collision-free
* Find closest state sc € T
* Extend sctoward s
 Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal

® Sgoal

Se

From last time: RRTs in action

e Sgoal Extend distance trades

Algorithm (input: So, Sgoal, initial Oﬁ sample eﬁ'_C'enCy
state tree T) with computational

e Sample statess €S = R% efficiency
until s is collision-free

 Find closest state sc € T

 Extend Sctoward s

* Addresulting state S’to T

* Repeat until T contains a
path from So to Sgoal

What about optimality?

How do we modify the basic RRT algorithm
to output optimal paths from so to Sgoar?

What about optimality?

How do we modify the basic RRT algorithm
to output optimal paths from so to sgoai?

 Change the sampling strategy?

What about optimality?

How do we modify the basic RRT algorithm
to output optimal paths from so to sgoai?

 Change the sampling strategy?

 Change the closest point logic?

What about optimality?

How do we modify the basic RRT algorithm
to output optimal paths from so to Sgoar?

* Change the sampling strategy?
 Change the closest point logic?

* Incrementally “rewire” the tree?

RRT variant called RRT* does this!

RRT* Algorithm

RRT* (input: So, Sgoal, initial state tree T)
« Sample states s € S = R0 until sis collision-free (often goal directed)
* Find closest state Sc € T
* Extend Sctoward s resulting in state S’
* STUFF GOES HERE
e Repeat until maximum iterations reached and T contains a path from
S0 to Sgoal

RRT* Algorithm

RRT* (input: So, Sgoal, initial state tree T)

« Sample states s € S = R0 until sis collision-free (often goal directed)

* Find closest state sc € T

* Extend Sctoward S resulting in state S’

* Find all Shear € T within a distance dto s’

* Find Smin € Snear, that has the lowest path cost to So -> Smin -> S’

 Addedge Smin->Ss’to T

* Check path cost through s’to all states in S € Snear, if any are lower
than existing path cost to s, then “rewire” tree to include edge s’-> s

e Repeat until maximum iterations reached and T contains a path from
S0 to Sgoal

RRT* by example

RRT* (input: So, Sgoal, initial state tree T)

Sample states s € S = R"® until s is collision-
free (often goal directed)

Find closest state sSc € T

Extend Sc toward s resulting in state s’

Find all Snear € T within a distance dto S’

Find Smin € Snear, that has the lowest path cost
to So -> Smin -> S’

Add edge Smin ->S’to T

Check path cost through s’to all statesin s €
Snear, if any are lower than existing path cost to
S, then “rewire” tree to include edge s’-> s
Repeat until maximum iterations reached and T
contains a path from So to Sgoar

® Sgoal

RRT* by example

RRT* (input: So, Sgoal, initial state tree T)

Sample states s €S = R’° until s is collision-
free (often goal directed)

Find closest state sc € T

Extend Sc toward s resulting in state s’

Find all Snear € T within a distance dto S’

Find Smin € Snear, that has the lowest path cost
to So -> Smin -> S’

Add edge Smin ->S’to T

Check path cost through s’to all statesin s €
Snear, if any are lower than existing path cost to
S, then “rewire” tree to include edge s’-> s
Repeat until maximum iterations reached and T
contains a path from So to Sgoar

® Sgoal

RRT* by example

RRT* (input: So, Sgoal, initial state tree T)

Sample states s € S = R"® until s is collision-
free (often goal directed)

Find closest state sc € T

Extend sc toward s resulting in state s’

Find all Snear € T within a distance dto S’

Find Smin € Snear, that has the lowest path cost
to So -> Smin -> S’

Add edge Smin ->S’to T

Check path cost through s’to all statesin s €
Snear, if any are lower than existing path cost to
S, then “rewire” tree to include edge s’-> s
Repeat until maximum iterations reached and T
contains a path from So to Sgoar

® Sgoal

RRT* by example

RRT* (input: So, Sgoal, initial state tree T)

Sample states s € S = R"® until s is collision-
free (often goal directed)

Find closest state sSc € T

Extend Sc toward s resulting in state s’

Find all Snear € T within a distance dto s’
Find Smin € Snear, that has the lowest path cost
to So -> Smin -> S’

Add edge Smin ->S’to T

Check path cost through s’to all statesin s €
Snear, if any are lower than existing path cost to
S, then “rewire” tree to include edge s’-> s
Repeat until maximum iterations reached and T
contains a path from So to Sgoar

® Sgoal

SC ---------------- nearest” states

RRT* by example

RRT* (input: So, Sgoal, initial state tree T)

Sample states s € S = R"® until s is collision-
free (often goal directed)

Find closest state sc € T

Extend Sc toward s resulting in state s’

Find all Snear € T within a distance dto S’

Find Smin € Snear, that has the lowest path cost
to S0 -> Smin -> S’

Add edge Smin ->s’to T

Check path cost through s’to all statesin s €
Snear, if any are lower than existing path cost to
S, then “rewire” tree to include edge s’-> s
Repeat until maximum iterations reached and T
contains a path from So to Sgoar

® Sgoal

SC ---------------- nearest” states

RRT* by example

RRT* (input: So, Sgoal, initial state tree T)

Sample states s € S = R"® until s is collision-
free (often goal directed)

Find closest state sc € T

Extend Sc toward s resulting in state s’

Find all Snear € T within a distance dto S’

Find Smin € Snear, that has the lowest path cost
to S0 -> Smin -> S’

Add edge Smin ->s’to T

Check path cost through s’to all statesin s €
Snear, if any are lower than existing path cost to
S, then “rewire” tree to include edge s’-> s
Repeat until maximum iterations reached and T
contains a path from So to Sgoar

® Sgoal

SC ---------------- nearest” states

RRT* by example

RRT* (input: So, Sgoal, initial state tree T)

Sample states s € S = R"® until s is collision-
free (often goal directed)

Find closest state sc € T

Extend Sc toward s resulting in state s’

Find all Snear € T within a distance dto S’

Find Smin € Snear, that has the lowest path cost
to S0 -> Smin -> S’

Add edge Smin ->s’to T

Check path cost through s’to all statesin s €
Snear, if any are lower than existing path cost to
S, then “rewire” tree to include edge s’-> s
Repeat until maximum iterations reached and T
contains a path from So to Sgoar

® Sgoal

SC ---------------- nearest” states

RRT* by example

RRT* (input: So, Sgoa, initial state tree T) ® Sgoal

e Sample states S € S = R until sis collision-
free (often goal directed)

* Findclosest state sSc € T

* Extend Sctoward s resulting in state S’

* Find all Snear € T within a distance dto s’

* Find Smin € Snear, that has the lowest path cost
to So -> Smin -> S’

 Addedge Smin->S'to T

* Check path cost through s’to all statesins €
Snear, if any are lower than existing path cost to
s, then “rewire” tree to include edge s’ -> s Sc A

* Repeat until maximum iterations reached and T
contains a path from So to Sgoar

RRT* by example

RRT* (input: So, Sgoa, initial state tree T) ® Sgoal

e Sample states S € S = R until sis collision-
free (often goal directed)

* Findclosest state sSc € T

* Extend Sctoward s resulting in state S’

* Find all Snear € T within a distance dto s’

* Find Smin € Snear, that has the lowest path cost
to So -> Smin -> S’

 Addedge Smin->S'to T

* Check path cost through s’to all statesins €
Snear, if any are lower than existing path cost to
s, then “rewire” tree to include edge s’ -> s Sc A

* Repeat until maximum iterations reached and T
contains a path from So to Sgoar

RRT* by example

RRT* (input: So, Sgoal, initial state tree T)

Sample states s € S = R"® until s is collision-
free (often goal directed)

Find closest state sSc € T

Extend Sc toward s resulting in state s’

Find all Snear € T within a distance dto S’
Find Smin € Snear, that has the lowest path cost
to So -> Smin -> S’

Add edge Smin ->S’to T

Check path cost through s’to all statesin s €
Snear, if any are lower than existing path cost to
S, then “rewire” tree to include edge s’-> s
Repeat until maximum iterations reached and
T contains a path from So to Sgoal

® Sgoal

R RT* by exam ple Nearest radius size is

another sample vs.

computational

efficiency decision!

RRT* (input: So, Sgoal, initial state tree T) ® Sgoal

e Sample states S € S = R until sis collision-
free (often goal directed)

* Find closest state sc € T

* Extend Sctoward s resulting in state S’

* Find all Snear € T within a distance dto s’

* Find Smin € Snear, that has the lowest path cost
to So -> Smin -> S’

 Addedge Smin->S'to T

* Check path cost through s’to all statesin s €
Snear, if any are lower than existing path cost to
S, then “rewire” tree to include edge s’-> s

* Repeat until maximum iterations reached and
T contains a path from So to Sgoal

RRT* Algorithm

[Source: Karaman & Fazzoli]

e

5

SEpane—1 |
it

e
"

!

T
L

—

" 5
iaw

% g

-2 " =
(h)
Fig. 1. A Comparison of the RRT* and RRT algorithms on a simulation example. The tree maintained by the RRT algorithm is shown in (a)-(d) in different

stages, whereas that maintained by the RRT* algorithm is shown in (e)-(h). The tree snapshots (a), (e) are at 1000 iterations , (b), (f) at 2500 iterations, (c),
(g) at 5000 iterations, and (d), (h) at 15,000 iterations. The goal regions are shown in magenta. The best paths that reach the target are highlighted with red.

Properties of RRT*

* Complete? Yes (still)!

Properties of RRT*

Complete? Yes (still)!
Optimal? Yes! But can still take a long time to converge to optimum!

Properties of RRT*

Complete? Yes (still)!
Optimal? Yes! But can still take a long time to converge to optimum!
Like RRT, dozens of variants of RRT* (e.g., bias samples to best path area)

Properties of RRT*

? Yes (still)!
? Yes! But can still take a long time to converge to optimum!
* Like RRT, of RRT* (e.g., bias samples to best path area)
* Isthere an analogous algorithm?

* PRMs are already asymptotically optimal as #nodes -> infinity
 There is a variant called PRM* that works just like PRM, but reduces
the “nearest points” ball as the number of samples grows

Properties of RRT*

? Yes (still)!
? Yes! But can still take a long time to converge to optimum!
* Like RRT, of RRT* (e.g., bias samples to best path area)
* Isthere an analogous algorithm?

* PRMs are already asymptotically optimal as #nodes -> infinity
 There is a variant called PRM* that works just like PRM, but reduces
the “nearest points” ball as the number of samples grows
 Can we combine PRMs (or graph planning generally) with RRT*?
 Thereis an algorithm call which tries to do
the “best of both world”

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Dynamics (aka Physics)

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

The Simplest “Robot”

« States:s = {9, 9} aka angle and
angular velocity

- Actions: a = T aka torque at joint

- Transitions: s" = f (s, a) aka physics

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Q: Why do we need to

track position and
velocity?

The Simplest “Robot”

IS TSI

« States:s = {9, 9} aka angle and

angular velocity

f
5) « Actions: a = T aka torque at joint

_ﬂ; - Transitions: s = f (s, a) aka physics

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

The Simplest “Robot” .
« States:s = {9, 9} aka angle and

angular velocity
SIS r

« Actions: a = T aka torque at joint

« Transitions: s’ = f (s, a) aka physics

f Euler ==
Integrator , ,
ss=s+dtx*s
Al

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

The Simplest “Robot” |

EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEE
EEEEEEEEEE

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

6 —
The Simplest “Robot” L |
4 - N
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 2} -
6 o | "
OF—® : —@
'g : '2
0. a ',
- _
"-.I \ } o
o . T o
Fi ki =4 -3 -2 -1 0 1 o 3
)

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

6 —
The Simplest “Robot” L '
4. - SR

(& \\

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Challenges for Dynamic RRTs

The “connect” operation is complex!

* We need to solve a boundary value
problem (find a path from sc to s’ such
that follows the dynamics)

e Basically a “mini” planning problems

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Challenges for Dynamic RRTs

The “connect” operation is complex!

* We need to solve a boundary value
problem (find a path from sc to s’ such
that follows the dynamics)

" Q: Why don’t we just try
a discretization of

, SN possible actions instead
toes of solving a boundary
value problem?

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Challenges for Dynamic RRTs

The “connect” operation is complex!

* We need to solve a boundary value
problem (find a path from sc to s’ such
that follows the dynamics)

e Basically a “mini” planning problems

Remember from last time with
our humanoid robot: |A| = 102°

0
0 Curse of dimensionality!

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Let’s try it anyway for the

pendulum since |4| = d

\

Task: start from the stable
downward equilibrium (0,0)
- States: s = {§, 6} aka angle and and swing up to the unstable
angular velocity ogel s
upward equilibrium (77,0
\up q (1,0) Y.

« Actions: a = 7 aka torque at joint

- Transitions: s’ = f(s, a) aka physics

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Elle Edit \iew Insert Tools Desktop Window Help L

Do b AANGBDEA- 2| 08| 0D

1

0.8

0.6

0.4

0.2

0r *

-0.2 1

0.4+

-0.6 F

-0.8 1

el

2 2.5 3 3.5 i 4.5

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Elle Edit View Insert Tools Desktop Window Help ¥
N2l | B|ARRARODRAL- 2|08 | =

10

8
6
4
2
0 L
2
4
6
8

-10

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Eile Edit Wiew |Insert Tools Deskfop Window Help o
NEde | | RRAOVDEL- 2| 0EH 0D

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

File Edit View Insert Tools Desktop Window Help L

NEEL| OB EL- G008 a0 Challenges for Dynamic RRTs

The “connect” operation is complex!

* We need to solve a boundary value
problem (find a path from sc to s’ such
that follows the dynamics)

e Basically a “mini” planning problems
What is the “closest state in the tree”
So even if we ignore the The “distance” between states of

“connect” issue. “distance” | dynamical systems is not well-defined
’ [] [] °
is still a problem (Definitely asymmetric!)

So what do we do?

Can we build robots in such a way that we can ignore dynamics?

* E.g., really strong motors, never move too quickly, etc.

So what do we do?

Can we build robots in such a way that we can ignore dynamics?
* E.g., really strong motors, never move too quickly, etc.

 Short answer is no...

So what do we do?

Can we build robots in such a way that we can ignore dynamics?
* E.g., really strong motors, never move too quickly, etc.
e Short answer is no...

Can we use RL to learn distance metrics or optimal policies?

So what do we do?

Humanoid:
27 DoFs, 21 Actuators.

So what do we do?

DeepMimic:. Example-Guided Deep Reinforcement
Learning of Physics-Based Character Skills

Xue Bin Peng’, Pieter Abbeel’, Sergey Levine', Michiel van de Panne?

' University of California g % University of British [UBC
Columbia @

Berkeley §

So what do we do?

[Jog

Backflip - _ 72
: Balance Beam 0.73 06 0.783
Baseball Pitch 247 57 0.785
| Cartwheel 272 51 0.804
_ Crawl 2.93 6B 0.932
Dance A 1.62 67 0.863
Dance B 2.3 79 0.822
Frontflip 1.65 81 0.485
Getup Face-Down 328 49 0.885
| Getup Face-Up 4.02 66 0.838
| Headspin 1.92 112 0.640
0.80 al 0.951

This still
doesn’t scale
well!

>100,000,000
seconds is
>1000 days

So what do we do?

Can we build robots in such a way that we can ignore dynamics?
* E.g., really strong motors, never move too quickly, etc.
* Short answer is no...

Can we use RL to learn distance metrics or optimal policies?

* This is an open research question and while their have been
some very successful examples, they are often correlated with
massive training times

Can we just use some key frames?

So what do we do?

SIMBICON: Simple Biped Locomotion Control

ACM Transaction on Graphics (Proceedings of SIGGRAPH 2007)

KangKang Yin Kevin Loken Michiel van de Panne

So what do we do?

So what do we do?

So what do we do?

But again now
we need to
draw key
frames for

everything.
Does that scale
for fine grained
manipulation?

|

So what do we do?

Can we build robots in such a way that we can ignore dynamics?

* E.g., really w590 quickly, etc.

e Short ans

Can we use F So What else optimal policies?
e Thisis an can we dO?!? le their have been

ften correlated with

Can we just use some key frames?

So what do we do?

Lots of math!

So what do we do?

Lots of math!) 1
noonnoonnnol

So what do we do?

Its actually not that
bad and the math

isn’t actually that
scary | promise!

So what do we do?

Its actually not that
bad and the math

isn’t actually that
scary | promise!

Trajectory Optimization™ (starred as in not tested in
detail — not as in optimal trajectory optimization)

Why do we keep bringing up optimization stuff
and putting * next to it?

Many problems in Al (and ML) can be written as mathematical programs

* |n doing so, you can often find interesting properties of the problem
(convexity, integerness, etc.) or useful relaxations

Why do we keep bringing up optimization stuff
and putting * next to it?

Many problems in Al (and ML) can be written as mathematical programs

* In doing so, you can often find interesting properties of the problem
(convexity, integerness, etc.) or useful relaxations

There’s a wide variety of tools available for solving convex, non-convex,
and even non-smooth optimization problems

Why do we keep bringing up optimization stuff
and putting * next to it?

Many problems in Al (and ML) can be written as mathematical programs

* In doing so, you can often find interesting properties of the problem
(convexity, integerness, etc.) or useful relaxations

There’s a wide variety of tools available for solving convex, non-convex,
and even non-smooth optimization problems

Often a good “first thing to try” for new problems

 Sometimes the best option too!

Why do we keep bringing up optimization stuff
and putting * next to it?

Many problems in Al (and ML) can be written as mathematical programs

* In doing so, you can often find interesting properties of the problem
(convexity, integerness, etc.) or useful relaxations

There’s a wide variety of tools available for solving convex, non-convex,
and even non-smooth optimization problems

Often a good “first thing to try” for new problems

 Sometimes the best option too!

Al (and ML) are increasingly using optimization as a tool

Why do we keep bringing up optimization stuff
and putting * next to it?

Many problems in Al (and ML) can be written as mathematical programs

* In doing so, you can often find interesting properties of the problem
(convexity, integerness, etc.) or useful relaxations

There’s a wide variety of tools available for solving convex, non-convex,
and even non-smooth optimization problems

Often a good “first thing to try” for new problems
* Sometimes the best option too!

Al (and ML) are increasingly using optimization as a tool

Courses @ Harvard: AM 121/221, CS 284

Trajectory Optimization™

Can we write the planning problem down as an optimization problem?

Minimize a cost in each state
(e.g., energy used)

Obey physics

Get to the goal

Trajectory Optimization™

Can we write the planning problem down as an optimization problem?
N

minimize E c(Sk, 0k)
50,00+, N, AN £

w0 s = o)

Minimize a cost in each state

(e.g., energy used)

SN = Sgoal Get to the goal

Atlas 1.0 Trajectory Optimization™

Trajectory Optimization®

Aka Value/Policy Iteration!

But wait can’t we just use those Bellman updates to solve this?

* We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

N
minimize Zc(sk, ar)

50,00, N, AN
k=0

Vo(sny) = c(sy,an)

Vies1(s) = ming c(s,a) +

Vk (f(S, (l))

subject to sgy1 = f(sg, ar)

SN = Sgoal

Trajectory Optimization®

Aka Value/Policy Iteration!

But wait can’t we just use those Bellman updates to solve this?

* We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

N
minimize Zc(sk, ar)

50,00, N, AN
k=0

Vo(sny) = c(sy,an)

Vies1(s) = ming c(s,a) +

Vk (f(S, a))

subject to sgy1 = f(sg, ar)

SN = Sgoal

Q: Will this work?

Trajectory Optimization®

Aka Value/Policy lteration!

But wait can’t we just use those Bellman updates to solve this?

* We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

N
minimize Zc(sk, ar)

50,00, N, AN
k=0

Vo(sny) = c(sy,an)

Vies1(s) = ming c(s,a) +
SN = Sgoal Vk (f(S, a))

NERVIER U Curse of dimensionality again!

subject to sgy1 = f(sg, ar)

Trajectory Optimization®

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

Trajectory Optimization®

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

* This works well in practice (think local search)

Trajectory Optimization®

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

* This works well in practice (think local search)

By making slight perturbations to the current
trajectory (blue) we can get to the goal (orange)

Trajectory Optimization®

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

* This works well in practice (think local search)

One way to do this is to do local
Xo around a discretization of the trajectory

Trajectory Optimization®

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

* This works well in practice (think local search)

There are also a whole host of algorithms one can use to solve these
problems including:

 DDP, SQP, Interior-Point Methods, Trust-Region Methods, etc.

Trajectory Optimization®

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

* This works well in practice (think local search)

There are also a whole host of algorithms one can use to solve these
problems including:

 DDP, SQP, Interior-Point Methods, Trust-Region Methods, etc.

And you can use off-the-shelf solvers to solve these problems. Popular
solvers include:

e SNOPT, IPOPT, NLOPT, fmincon (MATLAB), etc.

Spring Flamingo Trajectory Optimization™

Iteration: O

Spring Flamingo Trajectory Optimization™

Iteration: 50

*“3'?‘“!!55'5’5?

Quadrotor in Forest Trajectory Optimization™

Trajectory Optimization in practice™

How can | use trajectory optimization in practice?

Trajectory Optimization in practice™

How can | use trajectory optimization in practice?

1. Figure out your robot’s dynamics

Trajectory Optimization in practice*®

How can | use trajectory optimization in practice?
1. Figure out your robot’s dynamics

2. Invent a cost function

Trajectory Optimization in practice*®

How can | use trajectory optimization in practice?
1. Figure out your robot’s dynamics
2. Invent a cost function

3. Add constraints for obstacles, etc.

Trajectory Optimization in practice*®

How can | use trajectory optimization in practice?
1. Figure out your robot’s dynamics
2. Invent a cost function
3. Add constraints for obstacles, etc.

4. Send problem to your favorite solver

Trajectory Optimization in practice*®

How can | use trajectory optimization in practice?
1. Figure out your robot’s dynamics
2. Invent a cost function
3. Add constraints for obstacles, etc.
4. Send problem to your favorite solver

5. Iterate on cost/constraint formulation if the
result isn’t what you expect (often true)

Trajectory Optimization in practice *

How can | use trajectory optimization in practice?
1. Figure out your robot’s dynamics
2. Invent a cost function
3. Add constraints for obstacles, etc.
4. Send problem to your favorite solver

5. Iterate on cost/constraint formulation if the
result isn’t what you expect (often true)

The above is very “black box”... can you do better by diving into

the details of solvers? Yes! But that’s another course entirely!

Trajectory Optimization*

So trajectory optimization solves everything right?

e Can handle full robot dynamics

Trajectory Optimization*

So trajectory optimization solves everything right?
e Can handle full robot dynamics

* No need for distance metrics

Trajectory Optimization*

So trajectory optimization solves everything right?
e Can handle full robot dynamics
* No need for distance metrics

* Finds a locally optimal solution — no weird paths coming out!

Trajectory Optimization*

So trajectory optimization solves everything right?
e Can handle full robot dynamics

* No need for distance metrics

* Finds a locally optimal solution — no weird paths coming out!

* Not globally optimal (will often get stuck in local minima)

Trajectory Optimization*

So trajectory optimization solves everything right?
* Can handle full robot dynamics

* No need for distance metrics

* Finds a locally optimal solution — no weird paths coming out!

* Not globally optimal (will often get stuck in local minima)

* Not even complete (problems are often non-convex so it may not even
find a feasible solution)

* This is driven by the fact that NLP solvers are not a “technology” yet
(there is still a lot of open research questions)

Trajectory Optimization*

So trajectory optimization solves everything right?

e Can handle full robot dynamics

No free lunch strikes again!

* No need for distance metrics
* Finds a locally optimal solution — no weird paths coming out!

* Not globally optimal (will often get stuck in local minima)

* Not even complete (problems are often non-convex so it may not even
find a feasible solution)

e Also generally slow

Trajectory Optimization*

So trajectory optimization solves everything right?
e Can handle full robot dynamics
, , No free lunch strikes again!
* No need for distance metrics

* Finds a locally optimal solution — no weird paths coming out!

* Not globally optimal (will often get stuck in local minima)

* Not even complete (problems are often non-convex so it may not even
find a feasible solution)

Also ask me about my research
* Also generally slow later because these are the kinds

of things | am working to solve!

Trajectory Optimization™

1:48:58 05/06/2015 UTC

Summary

1. Policies are not feasible for most robots, so we plan instead
2. Robot planning usually involves both task and configuration spaces
3. RRTs and PRMs: powerful tools based on very simple ideas
* Probabilistically complete
* Single-query (RRT) vs. Multi-query (PRM)
4. For many real problems, collision checking can be expensive

5. RRT*: optimal and complete, but can be tricky to apply to dynamic
tasks (i.e. where the physics matters, not just geometry)

6. Trajectory optimization (CS 284): a broad class of methods built on
top of mathematical programming and “state of the art”

