
CS182: Artificial Intelligence

Brian Plancher

Harvard University

Fall 2018
Slides adapted from

Scott Kuindersma

Lecture 12: Robot Motion Planning I

Announcements

• Please submit your homework in the correct places – and you check

that your grade moves to Canvas when I announce grades are out. At

this point in the semester you will start losing points / getting 0s if

you don’t do this correctly so please be careful…

• Midterm 1 is a week from Monday and covers L1-L11, P1-P3, S1-S6

• Next week’s section will become midterm review – time TBD most

likely later in the week / over the weekend and longer

• The Robotics material from today and Monday will be on Midterm 2

(next Wednesday's guest lecture will have a problem on P4) so come!

Announcements

• Please submit your homework in the correct places – and you check

that your grade moves to Canvas when I announce grades are out. At

this point in the semester you will start losing points / getting 0s if

you don’t do this correctly so please be careful…

• Midterm 1 is a week from Monday and covers L1-L11, P1-P3, S1-S6

• Next week’s section will become midterm review – time TBD most

likely later in the week / over the weekend and longer

• The Robotics material from today and Monday will be on Midterm 2

(next Wednesday's guest lecture will have a problem on P4) so come!

Let me know if you have feedback

from class today and I can try to

incorporate that for Monday!

Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer Hardware

7

Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer Hardware

7

Mechanism designers create new robots and
actuators

1
MIT 2.74

Mechanism designers create new robots and
actuators

1

Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer Hardware

7

Sensor designers try to find new ways to collect data
about the world around the robot

2

Sensor designers try to find new ways to collect data
about the world around the robot

2

http://www.gelsight.com/

Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer Hardware

7

Perception is the processing of sensor data to
understand the world around the robot

3

CS 283

Perception is the processing of sensor data to
understand the world around the robot

3

Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer Hardware

7

Mapping & Localization is the process of using sensor data
to understand where a robot is in the world

4

Mapping & Localization is the process of using sensor data
to understand where a robot is in the world

4

We will talk about

particle filtering (a

technique used to

do this) later in the

course! (HMMs)

Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer Hardware

7

Planning is the process of computing an action plan for a
robot based on the previously computed information

5

Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer Hardware

7

Control is the process of executing a plan in the real world6

Control is the process of executing a plan in the real world6

Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer Hardware

7

Computer Hardware Designers are coming up with new
custom chips to deliver real time low power performance

7

Computer Hardware Designers are coming up with new
custom chips to deliver real time low power performance

7

CS 14x

CS 24x

Our Focus for today: Robot Motion Planning

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer Hardware

7

Our Focus for today: Robot Motion Planning

• How do we plan motions in high-dimensional continuous spaces?

• Why planning (and not policies)?

• Plans are often cheaper to compute than policies

• Robot operation often a series of self-contained tasks
that can be formulated as independent planning problems

Our Focus for today: Robot Motion Planning

• How do we plan motions in high-dimensional continuous spaces?

• Why planning (and not policies)?

• Plans are often cheaper to compute than policies

• Robot operation often a series of self-contained tasks
that can be formulated as independent planning problems

• Example: pick up the ball and put it in the bin

Our Focus for today: Robot Motion Planning

• How do we plan motions in high-dimensional continuous spaces?

• Why planning (and not policies)?

• Plans are often cheaper to compute than policies

• Robot operation often a series of self-contained tasks
that can be formulated as independent planning problems

• Example: pick up the ball and put it in the bin

• If we can come up with a good representation
of states, actions, transition model, etc. then
we can simply search that space for a plan!

Our Focus for today: Robot Motion Planning

• How do we plan motions in high-dimensional continuous spaces?

• Why planning (and not policies)?

• Plans are often cheaper to compute than policies

• Robot operation often a series of self-contained tasks
that can be formulated as independent planning problems

• Example: pick up the ball and put it in the bin

• If we can come up with a good representation
of states, actions, transition model, etc. then
we can simply search that space for a plan!

But what kind of space

should we search in?

Spaces and Transformations

• Task space: the 3D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

Spaces and Transformations

• Task space: the 3D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

• Configuration space: the n-dimensional
space of joint angles + robot world position

• Vector

Spaces and Transformations

• Task space: the 3D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

• Configuration space: the n-dimensional
space of joint angles + robot world position

• Vector

• Forward kinematics: maps q to outputs in
task space (e.g. hand position)

• Inverse kinematics: maps task space poses
to configuration space

Spaces and Transformations

• Task space: the 3D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

• Configuration space: the n-dimensional
space of joint angles + robot world position

• Vector

• Forward kinematics: maps q to outputs in
task space (e.g. hand position)

• Inverse kinematics: maps task space poses
to configuration space

Q: Are forward and

inverse kinematics

unique?

Spaces and Transformations

• Task space: the 3D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

• Configuration space: the n-dimensional
space of joint angles + robot world position

• Vector

• Forward kinematics: maps q to outputs in
task space (e.g. hand position)

• Inverse kinematics: maps task space poses
to configuration space

• Insight: mapping

task space

obstacles and goals

into configuration

space turns this into

a problem of

planning a path

for a single point

Configuration Space

Q: What would the

configuration space look like

for this robot?

Configuration Space

Configuration Space

Q: What about this

square robot?

Configuration Space

• Well for the Square

robot the obstacle

clearance depends on

rotation too!

• Configuration space is

3-dimensional (x, y,

rotation)

Configuration Space

• Consider a simple 2-link robot arm in

the task space (x,y) shown on the right.

• How could we instead think of the

configuration space? What would

uniquely determine the end effector

position?

Configuration Space

• Consider a simple 2-link robot arm in

the task space (x,y) shown on the right.

• How could we instead think of the

configuration space? What would

uniquely determine the end effector

position?

• Well if we consider the two joint angles

of the arm we can uniquely determine

the position of the end-effector so lets

make our configuration space (��, ��)

Configuration Space

Hmmm this is

getting complex

quite fast…

How to use configuration space in practice

If we map the obstacles into configuration space we

can check whether the configuration point, q, is in an

obstacle and we have a unique plan for the robot

• Problem: mapping obstacles into configuration

space is hard

How to use configuration space in practice

If we map the obstacles into configuration space we

can check whether the configuration point, q, is in an

obstacle and we have a unique plan for the robot

• Problem: mapping obstacles into configuration

space is hard

Better approach: use forward kinematics to check

task space obstacle collisions!

How to use configuration space in practice

If we map the obstacles into configuration space we

can check whether the configuration point, q, is in an

obstacle and we have a unique plan for the robot

• Problem: mapping obstacles into configuration

space is hard

Better approach: use forward kinematics to check

task space obstacle collisions!

• No free lunch – Now each collision check

requires full kinematics and not a simple lookup

A
B

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

Goal: Find shortest collision-free path

from configuration A to B

States: configurations � ∈ ℛ~��

Actions: Δq

Transition:
A

B

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

Goal: Find shortest collision-free path

from configuration A to B

States: configurations � ∈ ℛ~��

Actions: Δq

Transition:
A

B

(2 ankles + 2 knees + 2

hips + 2 shoulders + 2

elbows + 4 fingers + pose

of com) = ~20 variables

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

Goal: Find shortest collision-free path from configuration A to B

States: configurations � ∈ ℛ�� Actions: Δq Transition:

A
B

If we discretize states and actions (e.g., 10

positions per joint) can we use a graph search

algorithm like A*?

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

A
B

If we discretize states and actions (e.g., 10

positions per joint) can we use a graph search

algorithm like A*?

Sure but: � = � = ����

Goal: Find shortest collision-free path from configuration A to B

States: configurations � ∈ ℛ�� Actions: Δq Transition:

Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

A
B

If we discretize states and actions (e.g., 10

positions per joint) can we use a graph search

algorithm like A*?

Sure but: � = � = ����

Goal: Find shortest collision-free path from configuration A to B

States: configurations � ∈ ℛ�� Actions: Δq Transition:

…curse of dimensionality!

A Naive Random Approach

Well if we can’t explore the whole graph at once

what if we incrementally build up a graph of

reachable configurations?

A Naive Random Approach

Algorithm (input: s0, sgoal, initial state graph G)

• Pick a random state s ∈ G

• Apply random action a

• Add resulting state s’ to G

• Repeat until G has a path from s0 to sgoal

Well if we can’t explore the whole graph at once

what if we incrementally build up a graph of

reachable configurations?

A Naive Random Approach

Algorithm (input: s0, sgoal, initial state graph G)

• Pick a random state s ∈ G

• Apply random action a

• Add resulting state s’ to G

• Repeat until G has a path from s0 to sgoal

Well if we can’t explore the whole graph at once

what if we incrementally build up a graph of

reachable configurations?

Probabilistically

complete: As iterations

go to infinity, probability

that G contains a

solution goes to 1!

A Naive Random Approach

Algorithm (input: s0, sgoal, initial state graph G)

• Pick a random state s ∈ G

• Apply random action a

• Add resulting state s’ to G

• Repeat until G has a path from s0 to sgoal

Well if we can’t explore the whole graph at once

what if we incrementally build up a graph of

reachable configurations?

Q: What’s the

problem with

this?

Probabilistically

complete: As iterations

go to infinity, probability

that G contains a

solution goes to 1!

Naive Action Sampling

Lots of samples close to your initial state —> slow!

s0

sgoal

…

Rapidly Exploring Random Trees

Algorithm (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R20 until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a path from s0 to sgoal

Consider the following tweak to the naive approach

called Rapidly Exploring Random Trees (RRTs)

[Lavalle & Kuffner]

Rapidly Exploring Random Trees

Algorithm (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R20 until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a path from s0 to sgoal

Consider the following tweak to the naive approach

called Rapidly Exploring Random Trees (RRTs)

[Lavalle & Kuffner]

Rapidly Exploring Random Trees

Algorithm (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R20 until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a path from s0 to sgoal

Consider the following tweak to the naive approach

called Rapidly Exploring Random Trees (RRTs)

[Lavalle & Kuffner]

Randomness encourages exploration

Key idea: uniform random sampling in configuration space is

actually a heuristic that encourages exploration!

To see this we use Voronoi regions
Def: Voronoi region is the set of points in space that are closest to a

particular node in the tree:

Randomness encourages exploration

Randomness encourages exploration

Randomness encourages exploration

Randomness encourages exploration

Randomness encourages exploration

Rapidly Exploring Random Trees

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

Rapidly Exploring Random Trees

s0

s

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

Rapidly Exploring Random Trees

s0

s

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

Rapidly Exploring Random Trees

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

s

Rapidly Exploring Random Trees

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal
s

Rapidly Exploring Random Trees

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal
s

Uniform Sampling

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal s

s

Extend distance trades

off sample efficiency

with computational

efficiency

Uniform Sampling

s0

s

sgoal

s

s s

s

Properties of RRT

Key idea: random sampling will naturally reduce the size of Voronoi regions,

roughly prioritized by region size encouraging exploration

Properties of RRT

Key idea: random sampling will naturally reduce the size of Voronoi regions,

roughly prioritized by region size encouraging exploration

RRT is probabilistically complete!

• If there’s a solution it will find it eventually

• Can still be slow for some problems, but it is faster than naive action

sampling approach

Key idea: random sampling will naturally reduce the size of Voronoi regions,

roughly prioritized by region size encouraging exploration

RRT is probabilistically complete!

• If there’s a solution it will find it eventually

• Can still be slow for some problems, but it is faster than naive action

sampling approach

Properties of RRT

Q: Is this

algorithm

optimal?

Properties of RRT

Key idea: random sampling will naturally reduce the size of Voronoi regions,

roughly prioritized by region size encouraging exploration

RRT is probabilistically complete!

• If there’s a solution it will find it eventually

• Can still be slow for some problems, but it is faster than naive action

sampling approach

Not optimal (cost of paths are not considered)

• This is an example of “feasible motion planning”: find a path

Rapidly Exploring Random Trees – Variants

Standard RRT (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R20 until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a path from s0 to sgoal

Rapidly Exploring Random Trees – Variants

Rapidly Exploring Random Trees – Variants

Q: What

can we

change to

make this

better?

Rapidly Exploring Random Trees – Variants

Goal Directed Sampling (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R20 until s is collision-free but with

probability p sample the goal instead of a random point

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a path from s0 to sgoal

Intuition: instead of “stumbling” upon the solution, bias

the tree growth in the goal direction

Rapidly Exploring Random Trees – Variants

Rapidly Exploring Random Trees – Variants

Rapidly Exploring Random Trees – Variants

Q: How

could we

avoid this

problem?

Rapidly Exploring Random Trees – Variants

Q: How

could we

avoid this

problem?

Rapidly Exploring Random Trees – Variants

Bidirectional RRT (input: s0, sgoal, initial state trees T1, T2)

• Sample states s ∈ S = R20 until s is collision-free

• Find closest state sc ∈ T1

• Extend sc toward s

• Add resulting state s’ to T1

Intuition: search from one direction is sometimes easier than the other

Rapidly Exploring Random Trees – Variants

Bidirectional RRT (input: s0, sgoal, initial state trees T1, T2)

• Sample states s ∈ S = R20 until s is collision-free

• Find closest state sc ∈ T1

• Extend sc toward s

• Add resulting state s’ to T1

• Find closest state sc2 ∈ T2 to s’

• Extend sc2 toward s’

• Add resulting state s’’ to T2

• If s’’ == s’ and return a path from s0 to sgoal

• Else Swap(T1, T2)

Intuition: search from one direction is sometimes easier than the other

Rapidly Exploring Random Trees – Variants

Bidirectional RRT (input: s0, sgoal, initial state trees T1, T2)

• Sample states s ∈ S = R20 until s is collision-free

• Find closest state sc ∈ T1

• Extend sc toward s

• Add resulting state s’ to T1

• Find closest state sc2 ∈ T2 to s’

• Extend sc2 toward s’

• Add resulting state s’’ to T2

• If s’’ == s’ and return a path from s0 to sgoal

• Else Swap(T1, T2)

Intuition: search from one direction is sometimes easier than the other

Can also “balance” trees by swapping T1, T2 based on size

RRT often works really well in practice

RRT often works really well in practice

Sometimes Paths are Weird

What if we search the same state space
repeatedly?

RRT (a “single-query” algorithm) would become very inefficient as we

would “forget” all of the possible connections we learned in the

previous iteration

What if we search the same state space
repeatedly?

RRT (a “single-query” algorithm) would become very inefficient as we

would “forget” all of the possible connections we learned in the

previous iteration

What if instead of building a tree every time we want to move, we

build a reusable graph G of sampled states?

What if we search the same state space
repeatedly?

RRT (a “single-query” algorithm) would become very inefficient as we

would “forget” all of the possible connections we learned in the

previous iteration

What if instead of building a tree every time we want to move, we

build a reusable graph G of sampled states?

This “multi-query” approach is called Probabilistic Roadmaps (PRMs)

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 2: Online connect the start and goal nodes and run graph search

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 2: Online connect the start and goal nodes and run graph search

Probabilistic Roadmaps (PRMs) leverage an
offline and an online computation phase

Step 2: Online connect the start and goal nodes and run graph search

Q: Is this

optimal?

Is this

complete?

PRM Considerations

What if it fails?

• Maybe the roadmap was not

adequate

• Could spend more time in the

sampling/graph-building phase

• Could do another sampling phase

and reuse G

• Sampling and query phases don’t

have to be executed sequentially

PRM Considerations

What if it fails?

• Maybe the roadmap was not

adequate

• Could spend more time in the

sampling/graph-building phase

• Could do another sampling phase

and reuse G

• Sampling and query phases don’t

have to be executed sequentially

Inherent tradeoff between

offline and online

computational effort!

Challenges with RRTs & PRMs

1. Sampling effectively is hard

• Sometimes uniform coverage of the state space isn’t what we

want (e.g., if there are many unreachable regions)

Challenges with RRTs & PRMs

1. Sampling effectively is hard

• Sometimes uniform coverage of the state space isn’t what we

want (e.g., if there are many unreachable regions)

2. Connecting neighboring points can get complicated

• Remember from earlier we need to use forward kinematics to

check task space obstacle collisions! And complex geometries

make this even harder!

Challenges with RRTs & PRMs

1. Sampling effectively is hard

• Sometimes uniform coverage of the state space isn’t what we

want (e.g., if there are many unreachable regions)

2. Connecting neighboring points can get complicated

• Remember from earlier we need to use forward kinematics to

check task space obstacle collisions! And complex geometries

make this even harder!

• If you can’t simply draw straight lines between sample

configurations, this step could involve a whole other optimization!

Solving part of the collision checking problem
will get you your own startup!

Solving part of the collision checking problem
will get you your own startup!

Summary

1. Policies are not feasible for most robots, so we plan instead

2. Robot planning usually involves thinking about both task and

configuration spaces

3. RRTs and PRMs: powerful tools based on very simple ideas

• Probabilistically complete

• Hundreds of papers introducing variants and

improvements to the basic idea

• Single-query (RRT) vs. Multi-query (PRM)

4. For many real problems, collision checking can be expensive

CS182: Artificial Intelligence

Brian Plancher

Harvard University

Fall 2018

Lecture 13: Robot Motion Planning II

Slides adapted from

Scott Kuindersma

Announcements

• Midterm 1 is in 1 week (10/29) during class in the normal classroom

• Covers L1-L11, P1-P3, S1-S6

• Midterm review (no section this week)

• Tuesday 4:30-6:30 SC Hall E

• Sunday 12:00-2:00 in Pierce 301

• If you have an AEO letter for extra time or have a conflict with the

midterm you need to let us know today so we can ensure that we

figure out appropriate accommodations!

• The Robotics material is on midterm 2 and Wednesday's guest lecture

will have a problem on P4 so come!

Final Project Information is on Canvas!

5%

5%

5%

80%

• Proposal – 5%

• Describe the problem

• Identify the course related topics (aka what algorithms)

• List your intended experiments

• List papers / resources / outside code you intend to integrate with

• How are you dividing the work?

• Think of this as the first sections of your paper (abstract, background,

motivation, related work)

• Update – 5%

• Poster – 5%

• Report and Code – 85%

Final Project Information is on Canvas!

• Proposal – 5%

• Update – 5%

• How are you addressing your proposal feedback?

• How have things been going? Any changes from the proposal?

• Poster – 5%

• Report and Code – 85%

Final Project Information is on Canvas!

• Proposal – 5%

• Update – 5%

• Poster – 5%

• Think of it as a way to walk the course staff through your coming paper

• Algorithms explained, Graphs of experiments, Future work, etc.

• Last chance to get feedback from the course staff and make sure you are on

the right track for your final paper

• Posters must be sent to MCB by 7am on Friday Dec 7th. Hard deadline.

• Note: Midterm 2 is Dec 5th and presentation is Tuesday Dec 11th

• Make sure to include all sections in the template (but can make prettier)

• Report and Code – 85%

Final Project Information is on Canvas!

• Proposal – 5%

• Update – 5%

• Poster – 5%

• Report and Code – 85%

• The bulk of your grade

• Think of it as a full research paper

• Abstract, Background, Motivation, Related Work from proposal

• Algorithms explained, Graphs of experiments from Poster

• Wrapped up in a coherent paper

• Your code needs to work but the VAST MAJORITY of your grade is based on

your paper so make sure you have AI contributions written up

Final Project Information is on Canvas!

From last time: Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer Hardware

7

From last time: Spaces and Transformations

• Task space: the 3D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

• Configuration space: the n-dimensional
space of joint angles + robot world position

• Vector

• Forward kinematics: maps q to outputs in
task space (e.g. hand position)

• Inverse kinematics: maps task space poses
to configuration space

From last time: RRTs and PRMs

• Single-query (RRT) vs. Multi-query (PRM)

• Probabilistically complete

• Computes feasible paths

• Hundreds of papers introducing variants

From last time: RRTs and PRMs

• Single-query (RRT) vs. Multi-query (PRM)

• Probabilistically complete

• Computes feasible paths

• Hundreds of papers introducing variants

Collision

checking

can be

expensive!

Neither is

Optimal!
(Unless infinite

samples PRM)

From last time: RRTs in action

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

From last time: RRTs in action

s0

s

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

From last time: RRTs in action

s0

s

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

From last time: RRTs in action

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

s

From last time: RRTs in action

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal
s

From last time: RRTs in action

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal
s

From last time: RRTs in action

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal s

s

Extend distance trades

off sample efficiency

with computational

efficiency

What about optimality?

How do we modify the basic RRT algorithm

to output optimal paths from s0 to sgoal?

What about optimality?

How do we modify the basic RRT algorithm

to output optimal paths from s0 to sgoal?

• Change the sampling strategy?

What about optimality?

How do we modify the basic RRT algorithm

to output optimal paths from s0 to sgoal?

• Change the sampling strategy?

• Change the closest point logic?

What about optimality?

How do we modify the basic RRT algorithm

to output optimal paths from s0 to sgoal?

• Change the sampling strategy?

• Change the closest point logic?

• Incrementally “rewire” the tree?

RRT variant called RRT* does this!

RRT* Algorithm

RRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• STUFF GOES HERE

• Repeat until maximum iterations reached and T contains a path from

s0 to sgoal

RRT* Algorithm

RRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈ snear, if any are lower

than existing path cost to s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T contains a path from

s0 to sgoal

RRT* by example

s0

sgoal

2

3

3

2

RRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

RRT* by example

s0

sgoal

2

3

3

2

RRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

s
sc

RRT* by example

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

s0

s’
sc

2

3

3

2

1

RRT* by example

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

s0

s’
sc

2

3

3

2

1
“nearest” states

RRT* by example

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

s0

s’
sc

2

3

3

2

1
“nearest” states

2
22

RRT* by example

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

s0

s’
sc

2

3

3

2

1
“nearest” states

2
22

smin

RRT* by example

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

s0

s’
sc

2

3

3

2

1
“nearest” states

2

smin

RRT* by example

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

s0

s’
sc

2

3

3

2

1
“nearest” states

2

smin

RRT* by example

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

s0

s’
sc

2

3
2

1
“nearest” states

2

smin

RRT* by example

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and

T contains a path from s0 to sgoal

s0

2

3
2

1

2

RRT* by example

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and

T contains a path from s0 to sgoal

s0

2

3
2

1

2

Nearest radius size is

another sample vs.

computational

efficiency decision!

RRT* Algorithm
[Source: Karaman & Fazzoli]

RRT*

RRT

Properties of RRT*

• Complete? Yes (still)!

Properties of RRT*

• Complete? Yes (still)!

• Optimal? Yes! But can still take a long time to converge to optimum!

Properties of RRT*

• Complete? Yes (still)!

• Optimal? Yes! But can still take a long time to converge to optimum!

• Like RRT, dozens of variants of RRT* (e.g., bias samples to best path area)

Properties of RRT*

• Complete? Yes (still)!

• Optimal? Yes! But can still take a long time to converge to optimum!

• Like RRT, dozens of variants of RRT* (e.g., bias samples to best path area)

• Is there an analogous PRM* algorithm?

• PRMs are already asymptotically optimal as #nodes -> infinity

• There is a variant called PRM* that works just like PRM, but reduces

the “nearest points” ball as the number of samples grows

Properties of RRT*

• Complete? Yes (still)!

• Optimal? Yes! But can still take a long time to converge to optimum!

• Like RRT, dozens of variants of RRT* (e.g., bias samples to best path area)

• Is there an analogous PRM* algorithm?

• PRMs are already asymptotically optimal as #nodes -> infinity

• There is a variant called PRM* that works just like PRM, but reduces

the “nearest points” ball as the number of samples grows

• Can we combine PRMs (or graph planning generally) with RRT*?

• There is an algorithm call Fast Marching Trees (FMT*) which tries to do

the “best of both world”

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Dynamics (aka Physics)

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

The Simplest “Robot”

• States: � = �, �� aka angle and

angular velocity

• Actions: � = 	 aka torque at joint

• Transitions: �’ = �(�, �) aka physics

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

The Simplest “Robot”

• States: � = �, �� aka angle and

angular velocity

• Actions: � = 	 aka torque at joint

• Transitions: �’ = �(�, �) aka physics

Q: Why do we need to

track position and

velocity?

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

The Simplest “Robot”
• States: � = �, �� aka angle and

angular velocity

• Actions: � = 	 aka torque at joint

• Transitions: �’ = �(�, �) aka physics

� = � = �

�� = �� , 	 + � sin � − ���

�’ = � + �� ∗ ��

Euler

Integrator

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

The Simplest “Robot”

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

The Simplest “Robot”

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

The Simplest “Robot”
S

��

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Challenges for Dynamic RRTs

The “connect” operation is complex!

• We need to solve a boundary value

problem (find a path from sc to s’ such

that follows the dynamics)

• Basically a “mini” planning problems

S

��

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Challenges for Dynamic RRTs

The “connect” operation is complex!

• We need to solve a boundary value

problem (find a path from sc to s’ such

that follows the dynamics)

• Basically a “mini” planning problemsQ: Why don’t we just try

a discretization of

possible actions instead

of solving a boundary

value problem?

S

��

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Challenges for Dynamic RRTs

The “connect” operation is complex!

• We need to solve a boundary value

problem (find a path from sc to s’ such

that follows the dynamics)

• Basically a “mini” planning problems

Remember from last time with

our humanoid robot: = �!"!

Curse of dimensionality!

S

��

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Task: start from the stable

downward equilibrium (0,0)

and swing up to the unstable

upward equilibrium (#,0)

• States: � = �, �� aka angle and

angular velocity

• Actions: � = 	 aka torque at joint

• Transitions: �’ = �(�, �) aka physics

Let’s try it anyway for the

pendulum since = �

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Challenges for Dynamic RRTs

The “connect” operation is complex!

• We need to solve a boundary value

problem (find a path from sc to s’ such

that follows the dynamics)

• Basically a “mini” planning problems

What is the “closest state in the tree”

• The “distance” between states of

dynamical systems is not well-defined

(Definitely asymmetric!)

So even if we ignore the

“connect” issue, “distance”

is still a problem

So what do we do?

Can we build robots in such a way that we can ignore dynamics?

• E.g., really strong motors, never move too quickly, etc.

So what do we do?

Can we build robots in such a way that we can ignore dynamics?

• E.g., really strong motors, never move too quickly, etc.

• Short answer is no…

So what do we do?

Can we build robots in such a way that we can ignore dynamics?

• E.g., really strong motors, never move too quickly, etc.

• Short answer is no…

Can we use RL to learn distance metrics or optimal policies?

So what do we do?

So what do we do?

So what do we do?

This still

doesn’t scale

well!

>100,000,000

seconds is

>1000 days

So what do we do?

Can we build robots in such a way that we can ignore dynamics?

• E.g., really strong motors, never move too quickly, etc.

• Short answer is no…

Can we use RL to learn distance metrics or optimal policies?

• This is an open research question and while their have been
some very successful examples, they are often correlated with
massive training times

Can we just use some key frames?

So what do we do?

So what do we do?

So what do we do?

So what do we do?

But again now

we need to

draw key

frames for

everything.

Does that scale

for fine grained

manipulation?

So what do we do?

Can we build robots in such a way that we can ignore dynamics?

• E.g., really strong motors, never move too quickly, etc.

• Short answer is no…

Can we use RL to learn distance metrics or optimal policies?

• This is an open research question and while their have been
some very successful examples, they are often correlated with
massive training times

Can we just use some key frames?

So what else

can we do?!?

So what do we do?

Lots of math!

So what do we do?

Lots of math!

So what do we do?

Its actually not that

bad and the math

isn’t actually that

scary I promise!

So what do we do?

Its actually not that

bad and the math

isn’t actually that

scary I promise!

Trajectory Optimization* (starred as in not tested in
detail – not as in optimal trajectory optimization)

Why do we keep bringing up optimization stuff
and putting * next to it?

Many problems in AI (and ML) can be written as mathematical programs

• In doing so, you can often find interesting properties of the problem
(convexity, integerness, etc.) or useful relaxations

Why do we keep bringing up optimization stuff
and putting * next to it?

Many problems in AI (and ML) can be written as mathematical programs

• In doing so, you can often find interesting properties of the problem
(convexity, integerness, etc.) or useful relaxations

There’s a wide variety of tools available for solving convex, non-convex,
and even non-smooth optimization problems

Why do we keep bringing up optimization stuff
and putting * next to it?

Many problems in AI (and ML) can be written as mathematical programs

• In doing so, you can often find interesting properties of the problem
(convexity, integerness, etc.) or useful relaxations

There’s a wide variety of tools available for solving convex, non-convex,
and even non-smooth optimization problems

Often a good “first thing to try” for new problems

• Sometimes the best option too!

Why do we keep bringing up optimization stuff
and putting * next to it?

Many problems in AI (and ML) can be written as mathematical programs

• In doing so, you can often find interesting properties of the problem
(convexity, integerness, etc.) or useful relaxations

There’s a wide variety of tools available for solving convex, non-convex,
and even non-smooth optimization problems

Often a good “first thing to try” for new problems

• Sometimes the best option too!

AI (and ML) are increasingly using optimization as a tool

Why do we keep bringing up optimization stuff
and putting * next to it?

Many problems in AI (and ML) can be written as mathematical programs

• In doing so, you can often find interesting properties of the problem
(convexity, integerness, etc.) or useful relaxations

There’s a wide variety of tools available for solving convex, non-convex,
and even non-smooth optimization problems

Often a good “first thing to try” for new problems

• Sometimes the best option too!

AI (and ML) are increasingly using optimization as a tool

Courses @ Harvard: AM 121/221, CS 284

Trajectory Optimization*

Can we write the planning problem down as an optimization problem?

Minimize a cost in each state

(e.g., energy used)

Obey physics

Get to the goal

Trajectory Optimization*

Can we write the planning problem down as an optimization problem?

Minimize a cost in each state

(e.g., energy used)

Obey physics

Get to the goal

Atlas 1.0 Trajectory Optimization*

Trajectory Optimization*

But wait can’t we just use those Bellman updates to solve this?

• We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

$%&' � = min) * �, � +

$+ �, = * �,, �,

$% � �, �

Aka Value/Policy Iteration!

Trajectory Optimization*

But wait can’t we just use those Bellman updates to solve this?

• We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

$%&' � = min) * �, � +

$+ �, = * �,, �,

$% � �, �

Q: Will this work?

Aka Value/Policy Iteration!

Trajectory Optimization*

But wait can’t we just use those Bellman updates to solve this?

• We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

$%&' � = min) * �, � +

$+ �, = * �,, �,

$% � �, �

Curse of dimensionality again!� = = �!"!

Aka Value/Policy Iteration!

Trajectory Optimization*

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

Trajectory Optimization*

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

• This works well in practice (think local search)

Trajectory Optimization*

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

• This works well in practice (think local search)

-.

By making slight perturbations to the current

trajectory (blue) we can get to the goal (orange)

-/

Trajectory Optimization*

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

• This works well in practice (think local search)

-0

-/

One way to do this is to do local gradient

descent around a discretization of the trajectory

Trajectory Optimization*

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

• This works well in practice (think local search)

There are also a whole host of algorithms one can use to solve these
problems including:

• DDP, SQP, Interior-Point Methods, Trust-Region Methods, etc.

Trajectory Optimization*

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

• This works well in practice (think local search)

There are also a whole host of algorithms one can use to solve these
problems including:

• DDP, SQP, Interior-Point Methods, Trust-Region Methods, etc.

And you can use off-the-shelf solvers to solve these problems. Popular
solvers include:

• SNOPT, IPOPT, NLOPT, fmincon (MATLAB), etc.

Spring Flamingo Trajectory Optimization*

Spring Flamingo Trajectory Optimization*

Quadrotor in Forest Trajectory Optimization*

Trajectory Optimization in practice*

How can I use trajectory optimization in practice?

Trajectory Optimization in practice*

How can I use trajectory optimization in practice?

1. Figure out your robot’s dynamics

Trajectory Optimization in practice*

How can I use trajectory optimization in practice?

1. Figure out your robot’s dynamics

2. Invent a cost function

Trajectory Optimization in practice*

How can I use trajectory optimization in practice?

1. Figure out your robot’s dynamics

2. Invent a cost function

3. Add constraints for obstacles, etc.

Trajectory Optimization in practice*

How can I use trajectory optimization in practice?

1. Figure out your robot’s dynamics

2. Invent a cost function

3. Add constraints for obstacles, etc.

4. Send problem to your favorite solver

Trajectory Optimization in practice*

How can I use trajectory optimization in practice?

1. Figure out your robot’s dynamics

2. Invent a cost function

3. Add constraints for obstacles, etc.

4. Send problem to your favorite solver

5. Iterate on cost/constraint formulation if the
result isn’t what you expect (often true)

Trajectory Optimization in practice *

How can I use trajectory optimization in practice?

1. Figure out your robot’s dynamics

2. Invent a cost function

3. Add constraints for obstacles, etc.

4. Send problem to your favorite solver

5. Iterate on cost/constraint formulation if the
result isn’t what you expect (often true)

The above is very “black box”… can you do better by diving into
the details of solvers? Yes! But that’s another course entirely!

Trajectory Optimization*

So trajectory optimization solves everything right?

• Can handle full robot dynamics

Trajectory Optimization*

So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

Trajectory Optimization*

So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Finds a locally optimal solution – no weird paths coming out!

Trajectory Optimization*

So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Finds a locally optimal solution – no weird paths coming out!

But….

• Not globally optimal (will often get stuck in local minima)

Trajectory Optimization*

So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Finds a locally optimal solution – no weird paths coming out!

But….

• Not globally optimal (will often get stuck in local minima)

• Not even complete (problems are often non-convex so it may not even
find a feasible solution)

• This is driven by the fact that NLP solvers are not a “technology” yet
(there is still a lot of open research questions)

Trajectory Optimization*

So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Finds a locally optimal solution – no weird paths coming out!

But….

• Not globally optimal (will often get stuck in local minima)

• Not even complete (problems are often non-convex so it may not even
find a feasible solution)

• Also generally slow

No free lunch strikes again!

Trajectory Optimization*

So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Finds a locally optimal solution – no weird paths coming out!

But….

• Not globally optimal (will often get stuck in local minima)

• Not even complete (problems are often non-convex so it may not even
find a feasible solution)

• Also generally slow

Take CS 284 to learn more!

No free lunch strikes again!

Also ask me about my research

later because these are the kinds

of things I am working to solve!

Trajectory Optimization*

Summary

1. Policies are not feasible for most robots, so we plan instead

2. Robot planning usually involves both task and configuration spaces

3. RRTs and PRMs: powerful tools based on very simple ideas

• Probabilistically complete

• Single-query (RRT) vs. Multi-query (PRM)

4. For many real problems, collision checking can be expensive

5. RRT*: optimal and complete, but can be tricky to apply to dynamic

tasks (i.e. where the physics matters, not just geometry)

6. Trajectory optimization (CS 284): a broad class of methods built on

top of mathematical programming and “state of the art”

