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Announcements

• Please submit your homework in the correct places – and you check 

that your grade moves to Canvas when I announce grades are out. At 

this point in the semester you will start losing points / getting 0s if 

you don’t do this correctly so please be careful…

• Midterm 1 is a week from Monday and covers L1-L11, P1-P3, S1-S6

• Next week’s section will become midterm review – time TBD most 

likely later in the week / over the weekend and longer

• The Robotics material from today and Monday will be on Midterm 2 

(next Wednesday's guest lecture will have a problem on P4) so come!



Announcements

• Please submit your homework in the correct places – and you check 

that your grade moves to Canvas when I announce grades are out. At 

this point in the semester you will start losing points / getting 0s if 

you don’t do this correctly so please be careful…

• Midterm 1 is a week from Monday and covers L1-L11, P1-P3, S1-S6

• Next week’s section will become midterm review – time TBD most 

likely later in the week / over the weekend and longer

• The Robotics material from today and Monday will be on Midterm 2 

(next Wednesday's guest lecture will have a problem on P4) so come!

Let me know if you have feedback 

from class today and I can try to 

incorporate that for Monday!
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Perception is the processing of sensor data to 
understand the world around the robot
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Mapping & Localization is the process of using sensor data 
to understand where a robot is in the world
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We will talk about 

particle filtering  (a 

technique used to 

do this) later in the 

course! (HMMs)
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Planning is the process of computing an action plan for a 
robot based on the previously computed information
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Our Focus for today: Robot Motion Planning

• How do we plan motions in high-dimensional continuous spaces? 

• Why planning (and not policies)? 

• Plans are often cheaper to compute than policies

• Robot operation often a series of self-contained tasks 
that can be formulated as independent planning problems
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Our Focus for today: Robot Motion Planning

• How do we plan motions in high-dimensional continuous spaces? 

• Why planning (and not policies)? 

• Plans are often cheaper to compute than policies

• Robot operation often a series of self-contained tasks 
that can be formulated as independent planning problems

• Example: pick up the ball and put it in the bin

• If we can come up with a good representation
of states, actions, transition model, etc. then                                                  
we can simply search that space for a plan!

But what kind of space 

should we search in?
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Spaces and Transformations

• Task space: the 3D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the 
robot’s hand or an object

• Configuration space: the n-dimensional 
space of joint angles + robot world position

• Vector 

• Forward kinematics: maps q to outputs in 
task space (e.g. hand position)

• Inverse kinematics: maps task space poses 
to configuration space  

• Insight: mapping 

task space 

obstacles and goals 

into configuration 

space turns this into 

a problem of 

planning a path 

for a single point



Configuration Space

Q: What would the 

configuration space look like 

for this robot?
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Configuration Space

• Well for the Square 

robot the obstacle 

clearance depends on 

rotation too!

• Configuration space is 

3-dimensional (x, y, 

rotation)
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Configuration Space

• Consider a simple 2-link robot arm in 

the task space (x,y) shown on the right.

• How could we instead think of the 

configuration space? What would 

uniquely determine the end effector 

position?

• Well if we consider the two joint angles 

of the arm we can uniquely determine 

the position of the end-effector so lets 

make our configuration space (��, ��)



Configuration Space

Hmmm this is 

getting complex 

quite fast…



How to use configuration space in practice

If we map the obstacles into configuration space we 

can check whether the configuration point, q, is in an 

obstacle and we have a unique plan for the robot

• Problem: mapping obstacles into configuration 
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How to use configuration space in practice

If we map the obstacles into configuration space we 

can check whether the configuration point, q, is in an 

obstacle and we have a unique plan for the robot

• Problem: mapping obstacles into configuration 

space is hard

Better approach: use forward kinematics to check 

task space obstacle collisions!

• No free lunch – Now each collision check

requires full kinematics and not a simple lookup
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Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

Goal: Find shortest collision-free path 

from configuration A to B

States: configurations � ∈ ℛ~��

Actions: Δq

Transition: 
A

B

(2 ankles + 2 knees + 2 

hips + 2 shoulders + 2 

elbows + 4 fingers + pose 

of com) = ~20 variables
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Planning in Configuration Space

Suppose we have a configuration space representation of our planning problem

A
B

If we discretize states and actions (e.g., 10 

positions per joint) can we use a graph search 

algorithm like A*?

Sure but: � =  � = ����

Goal: Find shortest collision-free path from configuration A to B

States: configurations � ∈ ℛ��   Actions: Δq Transition:

…curse of dimensionality!
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A Naive Random Approach

Algorithm (input: s0, sgoal, initial state graph G)

• Pick a random state s ∈ G

• Apply random action a

• Add resulting state s’ to G

• Repeat until G has a path from s0 to sgoal

Well if we can’t explore the whole graph at once 

what if we incrementally build up a graph of 

reachable configurations?

Q: What’s the 

problem with 

this?

Probabilistically 

complete: As iterations 

go to infinity, probability 

that G contains a 

solution goes to 1!



Naive Action Sampling

Lots of samples close to your initial state —> slow!

s0

sgoal

…
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Rapidly Exploring Random Trees

Algorithm (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R20 until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a path from s0 to sgoal

Consider the following tweak to the naive approach 

called Rapidly Exploring Random Trees (RRTs)

[Lavalle & Kuffner]



Randomness encourages exploration

Key idea: uniform random sampling in configuration space is 

actually a heuristic that encourages exploration!

To see this we use Voronoi regions
Def: Voronoi region is the set of points in space that are closest to a 

particular node in the tree:
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s0
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Algorithm (input: s0, sgoal, initial 

state tree T)
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Uniform Sampling

s0

sgoal

Algorithm (input: s0, sgoal, initial 

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a 

path from s0 to sgoal s

s

Extend distance trades 

off sample efficiency 

with computational 

efficiency



Uniform Sampling

s0

s

sgoal

s

s s

s
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Properties of RRT

Key idea: random sampling will naturally reduce the size of Voronoi regions, 

roughly prioritized by region size encouraging exploration

RRT is probabilistically complete!

• If there’s a solution it will find it eventually

• Can still be slow for some problems, but it is faster than naive action 

sampling approach

Not optimal (cost of paths are not considered)

• This is an example of “feasible motion planning”: find a path



Rapidly Exploring Random Trees – Variants

Standard RRT (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R20 until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a path from s0 to sgoal
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Rapidly Exploring Random Trees – Variants

Q: What 

can we 

change to 

make this 

better?



Rapidly Exploring Random Trees – Variants

Goal Directed Sampling (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R20 until s is collision-free but with 

probability p sample the goal instead of a random point

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a path from s0 to sgoal

Intuition: instead of “stumbling” upon the solution, bias 

the tree growth in the goal direction
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problem?
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Bidirectional RRT (input: s0, sgoal, initial state trees T1, T2)

• Sample states s ∈ S = R20 until s is collision-free

• Find closest state sc ∈ T1

• Extend sc toward s

• Add resulting state s’ to T1

Intuition: search from one direction is sometimes easier than the other
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Rapidly Exploring Random Trees – Variants

Bidirectional RRT (input: s0, sgoal, initial state trees T1, T2)

• Sample states s ∈ S = R20 until s is collision-free

• Find closest state sc ∈ T1

• Extend sc toward s

• Add resulting state s’ to T1

• Find closest state sc2 ∈ T2 to s’

• Extend sc2 toward s’ 

• Add resulting state s’’ to T2

• If s’’ == s’ and return a path from s0 to sgoal

• Else Swap(T1, T2) 

Intuition: search from one direction is sometimes easier than the other

Can also “balance” trees by swapping T1, T2 based on size
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Sometimes Paths are Weird



What if we search the same state space 
repeatedly?

RRT (a “single-query” algorithm) would become very inefficient as we 

would “forget” all of the possible connections we learned in the 

previous iteration
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What if we search the same state space 
repeatedly?

RRT (a “single-query” algorithm) would become very inefficient as we 

would “forget” all of the possible connections we learned in the 

previous iteration

What if instead of building a tree every time we want to move, we 

build a reusable graph G of sampled states?

This “multi-query” approach is called Probabilistic Roadmaps (PRMs)
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Probabilistic Roadmaps (PRMs) leverage an 
offline and an online computation phase

Step 2: Online connect the start and goal nodes and run graph search

Q: Is this 

optimal?

Is this 

complete? 



PRM Considerations

What if it fails?

• Maybe the roadmap was not 

adequate

• Could spend more time in the 

sampling/graph-building phase

• Could do another sampling phase 

and reuse G

• Sampling and query phases don’t 

have to be executed sequentially



PRM Considerations

What if it fails?

• Maybe the roadmap was not 

adequate

• Could spend more time in the 

sampling/graph-building phase

• Could do another sampling phase 

and reuse G

• Sampling and query phases don’t 

have to be executed sequentially

Inherent tradeoff between 

offline and online 

computational effort!
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Challenges with RRTs & PRMs

1. Sampling effectively is hard

• Sometimes uniform coverage of the state space isn’t what we 

want (e.g., if there are many unreachable regions)

2. Connecting neighboring points can get complicated

• Remember from earlier we need to use forward kinematics to 

check task space obstacle collisions! And complex geometries 

make this even harder!

• If you can’t simply draw straight lines between sample 

configurations, this step could involve a whole other optimization!



Solving part of the collision checking problem 
will get you your own startup!



Solving part of the collision checking problem 
will get you your own startup!



Summary

1. Policies are not feasible for most robots, so we plan instead

2. Robot planning usually involves thinking about both task and 

configuration spaces

3. RRTs and PRMs: powerful tools based on very simple ideas

• Probabilistically complete

• Hundreds of papers introducing variants and 

improvements to the basic idea

• Single-query (RRT) vs. Multi-query (PRM)

4. For many real problems, collision checking can be expensive



CS182: Artificial Intelligence

Brian Plancher

Harvard University

Fall 2018

Lecture 13: Robot Motion Planning II

Slides adapted from 

Scott Kuindersma



Announcements

• Midterm 1 is in 1 week (10/29) during class in the normal classroom

• Covers L1-L11, P1-P3, S1-S6

• Midterm review (no section this week)

• Tuesday 4:30-6:30 SC Hall E 

• Sunday 12:00-2:00 in Pierce 301 

• If you have an AEO letter for extra time or have a conflict with the 

midterm you need to let us know today so we can ensure that we 

figure out appropriate accommodations!

• The Robotics material is on midterm 2 and Wednesday's guest lecture 

will have a problem on P4 so come!



Final Project Information is on Canvas!
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80%



• Proposal – 5%

• Describe the problem

• Identify the course related topics (aka what algorithms)

• List your intended experiments

• List papers / resources / outside code you intend to integrate with

• How are you dividing the work?

• Think of this as the first sections of your paper (abstract, background, 

motivation, related work)

• Update – 5%

• Poster – 5%

• Report and Code – 85%

Final Project Information is on Canvas!



• Proposal – 5%

• Update – 5%

• How are you addressing your proposal feedback?

• How have things been going? Any changes from the proposal?

• Poster – 5%

• Report and Code – 85%

Final Project Information is on Canvas!



• Proposal – 5%

• Update – 5%

• Poster – 5%

• Think of it as a way to walk the course staff through your coming paper

• Algorithms explained, Graphs of experiments, Future work, etc.

• Last chance to get feedback from the course staff and make sure you are on 

the right track for your final paper

• Posters must be sent to MCB by 7am on Friday Dec 7th. Hard deadline.

• Note: Midterm 2 is Dec 5th and presentation is Tuesday Dec 11th

• Make sure to include all sections in the template (but can make prettier)

• Report and Code – 85%

Final Project Information is on Canvas!



• Proposal – 5%

• Update – 5%

• Poster – 5%

• Report and Code – 85%

• The bulk of your grade

• Think of it as a full research paper

• Abstract, Background, Motivation, Related Work from proposal

• Algorithms explained, Graphs of experiments from Poster

• Wrapped up in a coherent paper

• Your code needs to work but the VAST MAJORITY of your grade is based on 

your paper so make sure you have AI contributions written up

Final Project Information is on Canvas!



From last time: Robotics is a BIG space

Mechanism 

Design

Sensor 

Design
Perception

Mapping & 

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer   Hardware

7



From last time: Spaces and Transformations

• Task space: the 3D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the 
robot’s hand or an object

• Configuration space: the n-dimensional 
space of joint angles + robot world position

• Vector 

• Forward kinematics: maps q to outputs in 
task space (e.g. hand position)

• Inverse kinematics: maps task space poses 
to configuration space  
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• Computes feasible paths
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From last time: RRTs and PRMs

• Single-query (RRT) vs. Multi-query (PRM)

• Probabilistically complete

• Computes feasible paths

• Hundreds of papers introducing variants

Collision 

checking 

can be 

expensive!

Neither is 

Optimal! 
(Unless infinite 

samples PRM)
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Algorithm (input: s0, sgoal, initial 

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a 

path from s0 to sgoal
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From last time: RRTs in action

s0

sgoal

Algorithm (input: s0, sgoal, initial 

state tree T)

• Sample states s ∈ S = R20

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a 

path from s0 to sgoal s

s

Extend distance trades 

off sample efficiency 

with computational 

efficiency
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What about optimality?

How do we modify the basic RRT algorithm 

to output optimal paths from s0 to sgoal?

• Change the sampling strategy?

• Change the closest point logic?

• Incrementally “rewire” the tree?

RRT variant called RRT* does this!



RRT* Algorithm

RRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• STUFF GOES HERE

• Repeat until maximum iterations reached and T contains a path from 

s0 to sgoal
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• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T
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sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)
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sgoalRRT* (input: s0, sgoal, initial state tree T)
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RRT* by example

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to 

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and 

T contains a path from s0 to sgoal

s0

2

3
2

1

2

Nearest radius size is 

another sample vs. 

computational 

efficiency decision!



RRT* Algorithm
[Source: Karaman & Fazzoli]

RRT*

RRT
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Properties of RRT*

• Complete? Yes (still)!

• Optimal? Yes! But can still take a long time to converge to optimum! 

• Like RRT, dozens of variants of RRT* (e.g., bias samples to best path area)

• Is there an analogous PRM* algorithm?

• PRMs are already asymptotically optimal as #nodes -> infinity

• There is a variant called PRM* that works just like PRM, but reduces 

the “nearest points” ball as the number of samples grows

• Can we combine PRMs (or graph planning generally) with RRT*?

• There is an algorithm call Fast Marching Trees (FMT*) which tries to do 

the “best of both world”
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Q: Why do we need to 

track position and 

velocity?



Ok so why can’t robots use these awesome kinematic 
planning algorithms all the time and be better at life?!?

The Simplest “Robot”
• States: � = �, �� aka angle and 

angular velocity

• Actions: � = 	 aka torque at joint 

• Transitions: �’ = �(�, �) aka physics

� = � = �

�� =  �� , 	 + � sin � − ���

�’ = � + �� ∗ ��

Euler 

Integrator
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The “connect” operation is complex!
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that follows the dynamics)
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Ok so why can’t robots use these awesome kinematic 
planning algorithms all the time and be better at life?!?

Challenges for Dynamic RRTs

The “connect” operation is complex!

• We need to solve a boundary value 

problem (find a path from sc to s’ such 

that follows the dynamics)

• Basically a “mini” planning problemsQ: Why don’t we just try 

a discretization of 

possible actions instead 

of solving a boundary 

value problem?

S

��



Ok so why can’t robots use these awesome kinematic 
planning algorithms all the time and be better at life?!?

Challenges for Dynamic RRTs

The “connect” operation is complex!

• We need to solve a boundary value 

problem (find a path from sc to s’ such 

that follows the dynamics)

• Basically a “mini” planning problems

Remember from last time with 

our humanoid robot:  = �!"!

Curse of dimensionality!

S

��



Ok so why can’t robots use these awesome kinematic 
planning algorithms all the time and be better at life?!?

Task: start from the stable 

downward equilibrium (0,0) 

and swing up to the unstable 

upward equilibrium (#,0) 

• States: � = �, �� aka angle and 

angular velocity

• Actions: � = 	 aka torque at joint 

• Transitions: �’ = �(�, �) aka physics

Let’s try it anyway for the 

pendulum since  = �
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Ok so why can’t robots use these awesome kinematic 
planning algorithms all the time and be better at life?!?

Challenges for Dynamic RRTs

The “connect” operation is complex!

• We need to solve a boundary value 

problem (find a path from sc to s’ such 

that follows the dynamics)

• Basically a “mini” planning problems

What is the “closest state in the tree”

• The “distance” between states of 

dynamical systems is not well-defined

(Definitely asymmetric!)

So even if we ignore the 

“connect” issue, “distance” 

is still a problem
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• E.g., really strong motors, never move too quickly, etc. 
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This still 

doesn’t scale 

well!

>100,000,000 

seconds is 

>1000 days
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Can we use RL to learn distance metrics or optimal policies?

• This is an open research question and while their have been 
some very successful examples, they are often correlated with 
massive training times

Can we just use some key frames?
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everything. 
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for fine grained 

manipulation?



So what do we do?

Can we build robots in such a way that we can ignore dynamics?

• E.g., really strong motors, never move too quickly, etc. 

• Short answer is no…

Can we use RL to learn distance metrics or optimal policies?

• This is an open research question and while their have been 
some very successful examples, they are often correlated with 
massive training times

Can we just use some key frames?

So what else 

can we do?!?
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Why do we keep bringing up optimization stuff 
and putting * next to it?

Many problems in AI (and ML) can be written as mathematical programs

• In doing so, you can often find interesting properties of the problem 
(convexity, integerness, etc.) or useful relaxations

There’s a wide variety of tools available for solving convex, non-convex, 
and even non-smooth optimization problems

Often a good “first thing to try” for new problems

• Sometimes the best option too!

AI (and ML) are increasingly using optimization as a tool

Courses @ Harvard: AM 121/221, CS 284
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But wait can’t we just use those Bellman updates to solve this?

• We can start at the goal state and then work backwards computing the 
lowest cost actions to get to all states all the way back to the start state
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Trajectory Optimization*

But wait can’t we just use those Bellman updates to solve this?

• We can start at the goal state and then work backwards computing the 
lowest cost actions to get to all states all the way back to the start state

$%&' � = min) * �, � +

$+ �, = * �,, �,

$% � �, �

Curse of dimensionality again!� =   = �!"!

Aka Value/Policy Iteration!
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• This works well in practice (think local search)

-.

By making slight perturbations to the current 

trajectory (blue) we can get to the goal (orange)

-/
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What if instead of finding a globally optimal path we search for a locally 
optimal path (off of some initial condition)?

• This works well in practice (think local search)

-0

-/

One way to do this is to do local gradient 

descent around a discretization of the trajectory
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What if instead of finding a globally optimal path we search for a locally 
optimal path (off of some initial condition)?

• This works well in practice (think local search)

There are also a whole host of algorithms one can use to solve these 
problems including:

• DDP, SQP, Interior-Point Methods, Trust-Region Methods, etc.

And you can use off-the-shelf solvers to solve these problems. Popular 
solvers include:

• SNOPT, IPOPT, NLOPT, fmincon (MATLAB), etc.
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Quadrotor in Forest Trajectory Optimization*
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How can I use trajectory optimization in practice?

1. Figure out your robot’s dynamics

2. Invent a cost function

3. Add constraints for obstacles, etc. 

4. Send problem to your favorite solver

5. Iterate on cost/constraint formulation if the 
result isn’t what you expect (often true)

The above is very “black box”… can you do better by diving into 
the details of solvers? Yes! But that’s another course entirely!
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So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Finds a locally optimal solution – no weird paths coming out!

But….

• Not globally optimal (will often get stuck in local minima)

• Not even complete (problems are often non-convex so it may not even 
find a feasible solution)

• This is driven by the fact that NLP solvers are not a “technology” yet 
(there is still a lot of open research questions)
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So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Finds a locally optimal solution – no weird paths coming out!

But….

• Not globally optimal (will often get stuck in local minima)

• Not even complete (problems are often non-convex so it may not even 
find a feasible solution)

• Also generally slow

Take CS 284 to learn more!

No free lunch strikes again!

Also ask me about my research 

later because these are the kinds 

of things I am working to solve!
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Summary

1. Policies are not feasible for most robots, so we plan instead

2. Robot planning usually involves both task and configuration spaces

3. RRTs and PRMs: powerful tools based on very simple ideas

• Probabilistically complete

• Single-query (RRT) vs. Multi-query (PRM)

4. For many real problems, collision checking can be expensive

5. RRT*: optimal and complete, but can be tricky to apply to dynamic 

tasks (i.e. where the physics matters, not just geometry)

6. Trajectory optimization (CS 284): a broad class of methods built on 

top of mathematical programming and “state of the art”


