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Abstract— Differential Dynamic Programming (DDP) has be-
come a popular approach to performing trajectory optimization
for complex, underactuated robots. However, DDP presents two
practical challenges. First, the evaluation of dynamics deriva-
tives during optimization creates a computational bottleneck,
particularly in implementations that capture second-order dy-
namic effects. Second, constraints on the states (e.g., boundary
conditions, collision constraints, etc.) require additional care
since the state trajectory is implicitly defined from the inputs
and dynamics. This paper addresses both of these problems by
building on recent work on Unscented Dynamic Programming
(UDP)—which eliminates dynamics derivative computations in
DDP—to support general nonlinear state and input constraints
using an augmented Lagrangian. The resulting algorithm has
the same computational cost as first-order penalty-based DDP
variants, but can achieve constraint satisfaction to high pre-
cision without the numerical ill-conditioning associated with
penalty methods. We present results demonstrating its favorable
performance on several simulated robot systems including a
quadrotor and 7-DoF robot arm.

I. INTRODUCTION

Trajectory optimization algorithms [1] are a powerful
set of tools for synthesizing dynamic motions for complex
robots [2], [3], [4], [5], [6]. Most robot tasks of interest
include state constraints relating to, e.g., obstacle avoidance,
reaching a desired goal state, and maintaining contact with
the environment. Direct transcription methods for trajectory
optimization parameterize both the state and input trajecto-
ries, which allows them to easily handle such constraints
by formulating a large (and sparse) nonlinear program that
can be solved using off-the-shelf Sequential Quadratic Pro-
gramming (SQP) packages. In contrast, Differential Dynamic
Programming (DDP) parameterizes only the input trajectory
and uses Bellman’s optimality principle to iteratively solve
a sequence of much smaller optimization problems [7], [8].
Recently, DDP and its variants have received increased atten-
tion due to growing evidence that online planning is possible
for high-dimensional robots [4], [9]. However, constraints are
typically addressed approximately by augmenting the native
cost with constraint penalty functions. This paper introduces
a variant of DDP that captures nonlinear constraints on states
and inputs with high accuracy while maintaining favorable
convergence properties.

The classical DDP algorithm begins by simulating the dy-
namics forward from an initial state with an initial guess for
the input trajectory. An affine control law is then computed
in a backwards pass using local quadratic approximations
of the cost-to-go. The forward pass is then performed again
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using this control law to update the input trajectory. This
process is repeated until convergence.

Second derivatives of the dynamics (rank-three tensors)
are required to compute the quadratic cost-to-go approxi-
mations used in DDP. This computational bottleneck led to
the development of the iterative Linear Quadratic Regulator
(iLQR) algorithm [10], which uses only first derivatives of
the dynamics to reduce computation time at the expense of
slower convergence. Recent work has proposed a completely
derivative-free variant of DDP that uses a deterministic
sampling scheme inspired by the unscented Kalman filter.
The resulting algorithm, Unscented Dynamic Programming
(UDP) [11], has the same computational complexity per-
iteration as iLQR with finite-difference derivatives, but pro-
vides empirical convergence approaching that of the full
second-order DDP algorithm. The primary contribution of
this paper is an extension of UDP that supports nonlinear
constraints on states and inputs.

Several authors have proposed methods for adding con-
straints to DDP methods. For the special case of box con-
straints on input variables, quadratic programs (QPs) can
be solved in the backwards pass [12], [13]. In this setting,
bounds on the inputs are enforced by projecting the feedback
terms onto the constraint surface. Farshidian et al. [14]
extends this to equality constraints on both the state and
input through a similar projection framework while pure state
constraints are still handled via penalty functions.

Designing effective penalty functions and continuation
schedules can be difficult. One common approach is to
increase penalty weighting coefficients in the cost function
until convergence to a result that satisfies the constraints [14].
However, it is well known that these methods often lead to
numerical ill-conditioning before reaching the desired con-
straint tolerance [15], [16]. In practice, this leads to infeasible
trajectories or collisions when run on hardware. Despite this,
penalty methods have seen broad application in robotics.
For example, van den Berg [17] uses exponential barrier
cost terms in the LQR Smoothing algorithm to prevent a
quadrotor from colliding with cylindrical obstacles.

The augmented Lagrangian approach to solving con-
strained nonlinear optimization problems was conceived to
overcome the conditioning problems of penalty methods
by adding a linear Lagrange multiplier term to the objec-
tive [16]. As pointed out by other researchers [18], these
methods may be particularly well-suited to trajectory opti-
mization problems as they allow the solver to temporarily
traverse infeasible regions and aggressively move towards
local optima before making incremental adjustments to sat-
isfy constraints. A theoretical formulation of this method



was proposed for use in the DDP context over two decades
ago [19] and was later used to develop a hybrid-DDP
algorithm [20], but this work appears to have received
little attention in the robotics community. We compare our
constrained UDP algorithm against this method.

In the remainder of the paper, we review key concepts
from DDP, augmented Lagrangian methods, and the un-
scented transform (Section II), introduce the constrained
UDP algorithm (Section III), and describe our experimental
results on an inverted pendulum, a quadrotor flying through
a virtual forest, and a manipulator avoiding obstacles (Sec-
tion IV). Several practical considerations are also discussed.

II. BACKGROUND

In the following subsections, we summarize key ideas
from DDP, augmented Lagrangian methods, and the un-
scented transform, all of which form the basis for the
constrained UDP algorithm described in Section III.

A. Differential Dynamic Programming

We assume a discrete-time nonlinear dynamical system of
the form:

xk+1 = f(xk, uk), (1)

where x ∈ Rn is the system state and u ∈ Rm is a
control input. The goal is to find an input trajectory, U =
{u0, . . . , uN−1}, that minimizes an additive cost function,

J(x0, U) = `f (xN ) +

N−1∑
k=0

`(xk, uk), (2)

where x0 is the initial state and x1, . . . , xN are computed by
integrating forward the dynamics (1).

Using Bellman’s principle of optimality [21], we can de-
fine the optimal cost-to-go, Vk(x), by the recurrence relation:

VN (x) = `f (xN )

Vk(x) = min
u

`(x, u) + Vk+1(f(x, u)).
(3)

When interpreted as an update procedure, this relationship
leads to classical dynamic programming algorithms [21].
However, the curse of dimensionality prevents direct applica-
tion of dynamic programming to most systems of interest to
the robotics community. In addition, while VN (x) = `f (xN ),
and often has a simple analytical form, Vk(x) will typically
have complex geometry that is difficult to represent due
to the nonlinearity of the dynamics (1). DDP avoids these
difficulties by settling for local approximations to the cost-
to-go along a trajectory.

We define Q(δx, δu) as the local change in the minimiza-
tion argument in (3) under perturbations, δx, δu:

Q(δx, δu) = `(x+ δx, u+ δu)

+ V (f(x+ δx, u+ δu))

− `(x, u)− V (f(x, u)).

(4)

Taking the second-order Taylor expansion of Q, we have:

Q(δx, δu) ≈ 1

2

 1
δx
δu

T  0 QTx QTu
Qx Qxx Qxu
Qu QTxu Quu

 1
δx
δu

 , (5)

where the block matrices are computed as:

Qxx = `xx + fTx V
′
xxfx + V ′x · fxx

Quu = `uu + fTu V
′
xxfu + V ′x · fuu

Qxu = `xu + fTx V
′
xxfu + V ′x · fxu

Qx = `x + fTx V
′
x

Qu = `u + fTu V
′
x.

(6)

Following the notation used elsewhere [4], we have dropped
explicit time indices and used a prime to indicate the next
timestep. Derivatives with respect to x and u are are denoted
with subscripts. The rightmost terms in the equations for
Qxx, Quu, and Qxu involve second derivatives of the dynam-
ics, which are rank-three tensors. As mentioned previously,
these tensor calculations are relatively expensive and are
often omitted, resulting in the iLQR algorithm [10].

Minimizing equation (5) with respect to δu results in the
following correction to the control trajectory:

δu = −Q−1uu (Quxδx+Qu) ≡ Kδx+ d, (7)

which consists of an affine term d and a linear feedback term
Kδx. These terms can be substituted back into equation (5)
to obtain an updated quadratic model of V :

∆V = −1

2
QuQ

−1
uuQu

Vx = Qx −QuQ−1uuQux
Vxx = Qxx −QxuQ−1uuQux.

(8)

Therefore, a backward update pass can be performed starting
at the final state, xN , by setting VN = `f (xN ), and iteratively
applying the above computations. A forward simulation pass
is then performed to compute a new state trajectory using the
updated controls. This forward-backward process is repeated
until the algorithm converges within a specified tolerance.

DDP, like other variants of Newton’s method, can achieve
quadratic convergence near a local optimum [8], [22]. How-
ever, care must be taken to ensure good convergence behavior
from arbitrary initialization: A line search parameter, α, must
be added to the forward pass to ensure a satisfactory decrease
in cost, and a regularization term, ρ, must be added to Quu
in equation (7) to ensure positive-definitiveness [23].

B. Unscented Dynamic Programming

UDP replaces the gradient and Hessian calculations in
equation (6) with approximations computed from a set of
sample points [11]. Inspired by the Unscented Kalman
Filter [24], points are sampled from a level set of the cost-to
go function and propagated backward in time through the
nonlinear dynamics. They are then used to compute a new
cost-to-go to approximation at the earlier timestep.



To compute the derivatives of V (f(x, u)) appearing in the
Hessian (6), a set of 2(n+m) sample points are generated
from the columns of the following matrix:

L = chol

([
V ′xx 0
0 `uu

]−1)
. (9)

Each column, Li, is scaled by a constant factor, β, and both
added to and subtracted from the vector [x′;u] (again, using
the shorthand x = xk, u = uk, x′ = xk+1):[

x̃′i
ũi

]
=

[
x′

u

]
+ βLi

[
x̃′i+m+n

ũi+m+n

]
=

[
x′

u

]
− βLi. (10)

The samples are then propagated backwards through the
dynamics such that x̃i = f−1(x̃′i, ũi). A backwards dynamics
function can always be defined for a continuous-time dynam-
ical system by simply integrating backwards in time using,
for example, a Runge-Kutta method. Note that this problem
is not well posed for dynamics that include rigid contact
unless certain smoothing approximations are made [25].

Using these sample points, the Hessian in equation (6)
becomes:[

Qxx Qxu
Qux Quu

]
= M−1 +

[
`xx `xu
`ux 0

]
M =

1

2β2

2(n+m)∑
i=1

([
x̃i
ũi

]
−
[
x
u

])([
x̃i
ũi

]
−
[
x
u

])T
.

(11)

The gradient terms in (6) can be computed from the same
set of sample points by solving a linear system,

[
Qx
Qu

]
= D−1

 V ′xx̃i − V ′xx̃i+m+n

...
V ′xx̃n+m − V ′xx̃2(m+n)

+

[
`x
`u

]
,

D =

[
x̃i − x̃i+m+n . . . x̃m+n − x̃2(m+n)

ũi − ũi+m+n . . . ũm+n − ũ2(m+n)

]
,

(12)

which is equivalent to a centered finite difference.

C. Augmented Lagrangian Methods

A natural approach to approximately enforcing constraints
in optimization algorithms is to apply a quadratic penalty
to constraint violations. Suppose that we wish to solve the
generic minimization problem:

minimize
z

g(z)

subject to ci(z) = 0 i ∈ E ,
(13)

where g(z) and ci(z) are smooth nonlinear functions. Penalty
methods for solving constrained optimization problems start
by defining a new cost function,

gp(z;µ) = g(z) +
µ

2

∑
i∈E

ci(z)
T ci(z), (14)

where µ is a scalar weighting parameter. As µ → ∞, the
minimizing value of gp(z;µ) will converge toward satisfac-
tion of the constraints [16]. While µ often does not have
to grow unbounded for a solution to be found within a
given tolerance, numerical issues are still prevalent since

the condition number of the Hessian of gp grows with µ
(see [16] for additional details). It is important to note that,
while we focus on quadratic penalties in this paper, there are
a wide variety of other penalty functions that can be used. For
example, L1 loss functions have also been used for collision-
free path planning in robotic arms and humanoids [26].

To overcome the numerical issues associated with penalty
methods, augmented Lagrangian solvers add a term to gp
that estimates the Lagrange multipliers associated with the
constraints:

LA(z;µ, λ) =

g(z)+
µ

2

∑
i∈E

ci(z)
T ci(z) +

∑
i∈E

λici(z)
. (15)

Given initial values for µ and λ, an unconstrained minimiza-
tion is performed, after which µ and λ are updated. As in
penalty methods, µ is systematically increased across these
“major iterations” using a predefined schedule. However,
the presence of the λ terms allows convergence with much
smaller values of µ.

The update for λ at major iteration j can be derived by
considering the first-order necessary conditions evaluated at
an approximate minimizer, zj :

0 ≈ OzLA(zj ;µj , λ
j) =

Ozg(zj)−
∑
i∈E

[λji − µjci(zj)]Ozci(zj). (16)

Recall that the first-order necessary conditions for a local so-
lution, z∗, λ∗, of the original constrained optimization prob-
lem is given by differentiating the (true) Lagrangian [16]:

0 = Ozg(z∗)−
∑
i∈E

λ∗iOzci(z
∗). (17)

Comparing (16) and (17), a natural update rule for λ arises:

λj+1
i ← λji − µjci(zj) ∀i ∈ E . (18)

It can be shown that given λ∗, the solution, z∗, of (13) is
a strict local minimizer of (15) for all µ above some mini-
mum value [16]. Practically speaking, the aim is to quickly
improve estimates of λ∗ so that reasonable approximations of
z∗ can be computed by minimizing (15) without µ growing
too large.

III. CONSTRAINED UNSCENTED DYNAMIC
PROGRAMMING

To develop the constrained UDP algorithm, we add
quadratic penalty and Lagrange multiplier terms for each
constraint and define an outer loop to update λ and µ when
the inner UDP solution converges. We use the following
augmented Lagrangian function:

LA(x0, U ;µ, λ) = `f (xN ) +

N−1∑
k=0

`(xk, uk) +

1

2

N∑
k=0

c(xk,uk)T Iµk
c(xk, uk) + diag(λk)c(xk, uk),

(19)



where c(x, u) is the vertical concatenation of all equality and
inequality constraints:

ci(x, u) = 0, i ∈ E ci(x, u) ≥ 0, i ∈ I. (20)

Note that we are using separate µik and λik for each constraint
at each timestep.

To handle inequality constraints, we follow [18] and define
Iµk

as a diagonal matrix that encodes the active constraints:

Iµk
(i, i) =

{
µik i ∈ E , ci(xk, uk) < 0, λik > 0

0 otherwise
(21)

Including Iµk
in (19) ensures that penalties are not incurred

when inequality constraints are satisfied.
At each timestep during the backward pass of the UDP

algorithm, the constraint functions and their gradients are
evaluated. A modified version of Q(δx, δu) from equa-
tions (5)–(6), which we denote Q̂, is then defined to include
a Gauss-Newton approximation of the constraint terms:

Q̂xx = Qxx +
∂c(x, u)

∂x
Iµ
∂c(x, u)

∂x

Q̂uu = Quu +
∂c(x, u)

∂u
Iµ
∂c(x, u)

∂u
+ ρI

Q̂xu = Qxu +
∂c(x, u)

∂x
Iµ
∂c(x, u)

∂u

Q̂x = Qx + c(x, u)Iµ
∂c(x, u)

∂x
+ diag(λ)

∂c(x, u)

∂x

Q̂u = Qu + c(x, u)Iµ
∂c(x, u)

∂u
+ diag(λ)

∂c(x, u)

∂u
,

(22)

where we have included a regularization parameter ρ > 0.
Equations (7) and (8) are used to compute the feedback
policy during the backwards pass as usual.

The algorithm proceeds by running the inner augmented
UDP algorithm until convergence, and then updating µ and
λ according to a set schedule until the desired feasibility
tolerance is achieved. The full constrained UDP procedure
is summarized in Algorithm 1.

A. Updating µ and λ

As is typically done in augmented Lagrangian methods,
we update λ only if the constraint violation of the local mini-
mizer is less than a threshold value, φ, and otherwise update
µ. The parameter φ is updated according to a predefined
schedule to help guide the algorithm toward a solution while
avoiding large increases in µ early on. While there are many
different variations on this schedule in the literature, most
suggest a monotonically decreasing schedule for φ, which
results in a monotonically increasing µ [27], [16].

IV. EXAMPLES

In this section, three numerical examples are provided
to demonstrate the performance of constrained UDP. We
compare UDP and iLQR using both penalty and augmented
Lagrangian formulations. All of the algorithms are imple-
mented in MATLAB. Each uses the same scheduling of
updates to µ and λ, and all integration is done with a 3rd-
order Runge-Kutta method and a time horizon of 4 seconds.

Algorithm 1 Constrained UDP
1: Initialize µ, λ, φ, ρ, U , x0
2: Perform forward pass to compute X = {x0, x1, . . . , xN}
3: while max(c) > εc do
4: while cost not converged do
5: Compute VN and derivatives
6: for k = N − 1, . . . , 0 do
7: (11)–(12), (22) → Q̂k

8: if Q̂kuu is invertible then
9: (7) → Kk, dk

10: (8) → Vk and derivatives
11: else
12: Increase ρ go to line 6
13: end if
14: end for
15: α = 1
16: x̃0 = x0
17: for k = 0, . . . , N − 1 do
18: ũk = uk + αdk +Kk(x̃k − xk)
19: x̃k+1 = f(x̃k, ũk)
20: end for
21: Compute J̃ using (2) and X̃, Ũ
22: if J̃ satisfies line search criteria then
23: Update X ← X̃ , U ← Ũ
24: else
25: Reduce α and go to line 17
26: end if
27: end while
28: for k = 0, . . . , N do
29: for i ∈ E ∪ I do
30: if cki < φki then
31: Update λki using (18)
32: Reduce φki
33: else
34: Increase µik
35: end if
36: end for
37: end for
38: end while

Backward
Pass

Forward
Pass

Outer
Loop

Updates

A. Inverted Pendulum

We first consider the classic inverted-pendulum system
and swing-up task. We define the state vector to be x =
[y, θ, ẏ, θ̇]T , where y is the translation of the cart and θ is
the angle of the pendulum measured from the downward
equilibrium. The initial state is x0 = [0, 0, 0, 0]T and the goal
state is xg = [0, π, 0, 0]T . We use a quadratic cost function
of the form:

J =
1

2
(xN − xg)TQN (xN − xg) +

N−1∑
k=0

1

2
(xk − xg)TQ(xk − xg) +

1

2
uTkRuk,

(23)

where Q = 0.1 × I4x4, R = 0.01, and QN = 1000 × I4x4.
We set the number of knot points to N = 120 and initialized



the algorithms with all of the states and controls set to 0.
We also enforced an input constraint of ±30 N, and a final
state constraint of xN = xg . We ran optimizations at three
different constraint tolerances: 1e−2 (“low precision”), 1e−4

(“medium precision”), and 5e−7 (“high precision”). In all
cases, the intermediate cost convergence tolerance was set to
1e−2 and the final iteration cost convergence tolerance was
set to 1e−6. We also set a maximum value of 1e30 for µ,
since allowing it to grow much larger led to poor numerical
conditioning. For both penalty-based and augmented UDP,
β was set to 1e−2.

Figure 1 provides some intuition for how the constrained
UDP algorithm solves the inverted pendulum swing-up prob-
lem. The vertical dashed black lines indicate outer loop
updates. Intuitively, the first major iteration finds a local
minimum of the primary objective despite large constraint
violations. Later iterations reduce constraint violation while
often increasing cost (unconstrained solutions give a lower
bound on cost). Despite increasing values of µ in the final
few iterations, the product of c(x, u) and µ remains relatively
constant due to the corresponding decrease in constraint
violation. We also observed that the algorithm often violates
input constraints temporarily to guide the state trajectory to
feasible regions of state space. This behavior is qualitatively
different from SQP methods, where linearized constraints are
strictly satisfied during each major iteration.

In our initial experiments, we found that using a separate
µ and λ for each constraint at each timestep allows the
algorithm more flexibility in adjusting the penalty parameters
to allow for these temporary constraint violations. Unfor-
tunately, this flexibility sometimes comes at the price of
additional major iterations, where adjacent timesteps pass
large inputs back-and-forth until both µ values are increased
sufficiently.
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Fig. 1. Cost and constraint violation per iteration for the constrained UDP
algorithm for the inverted pendulum.

Figure 2 shows a typical output from the augmented iLQR
algorithm (iLQR-A), which fails in the high-precision case,
exiting after reaching a limit of 100 major iterations. The
algorithm makes progress until the upper bound of µ ≤ 1e30

is reached on the final state constraint penalty. In later

iterations, a trade-off occurs between improving satisfaction
of the input constraints and the final state constraint, and the
algorithm is unable to make further progress.
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Fig. 2. Inverted pendulum cost and constraint violation per iteration for
the augmented iLQR algorithm failing with 5e−7 constraint tolerance.

Complete results from our inverted pendulum experiments
are given in Table I. Results in red indicate a failure to meet
the required constraint tolerance. All of the algorithms were
able to converge in the low-precision setting with very similar
total cost, but the penalty methods required much larger
maximum values for µ. We also found that iLQR-A finished
the fastest, although UDP-A found a lower final cost. In the
medium-precision setting, both augmented Lagrangian meth-
ods succeeded, while the penalty methods failed to achieve
state constraint tolerance and exited after reaching 100 major
iterations. In the high-precision setting, the constrained UDP
algorithm (UDP-A) was able to find a feasible solution while
all other algorithms failed. This experiment and those that
follow show that, for loose constraint tolerances, the use of
both iLQR and penalty methods may be sufficient, but UDP-
A is superior when high-precision is desired.

B. Quadrotor

The objective for this example is to compute a trajec-
tory that flies a quadrotor through a forest while avoiding
collisions with trees. The quadrotor has four inputs, cor-
responding to the thrust of each rotor, and twelve states
corresponding to the position and Euler angles, along with
their respective first derivatives. A quadratic cost function
with Q = 0.1 × I12x12, R = 0.01 × I4x4, and QN =
1000 × I12x12 was used, with N = 120 knot points. All
control inputs were initialized to 0, an input constraint of
−10 ≤ u ≤ 10 was applied, and a no-collision constraints
with the trees and a final state constraint of xN = xg were
enforced. The algorithms were again tested at three different
constraint tolerance values. For the unscented variants, β was
set to 1e− 4. Figure 3 shows a final trajectory computed by
the constrained UDP algorithm.

The full results are shown below in Table II. As in the
previous example, all of the algorithms converged to the



Low precision: max(c) < 1e−2, initial φ = 1e−1

Iters Cost cx cu µx µu
iLQR-P 254 1006.1 2.3e−4 5.8e−7 1e7 1e7

UDP-P 229 1022.4 1.2e−4 1.1e−6 1e8 1e8

iLQR-A 93 1001.0 8.2e−3 1.8e−3 1e5 1e3

UDP-A 140 999.6 8.8e−3 4.8e−4 1e5 1e3

Medium precision: max(c) < 1e−4, initial φ = 1e−2

Iters Cost cx cu µx µu
iLQR-P 231 1011.9 1.7e−4 1.8e−4 1e11 1e11

UDP-P 258 1054.2 4.1e−4 3.4e−8 1e16 1e16

iLQR-A 98 1001.4 2.4e−5 7.7e−5 1e7 1e8

UDP-A 126 999.8 9.0e−6 3.7e−5 1e6 1e4

High precision: max(c) < 5e−7, initial φ = 5e−3

Iters Cost cx cu µx µu
iLQR-A 179 1001.7 3.7e−5 5.0e−5 1e17 1e13

UDP-A 117 999.8 4.6e−8 1.3e−7 1e8 1e7

TABLE I
INVERTED PENDULUM OPTIMIZATION RESULTS. RED INDICATES

FAILURE TO MEET CONSTRAINT TOLERANCE. SEE TEXT FOR DETAILS.

Fig. 3. Collision-free quadrotor trajectory computed by constrained UDP.

low-precision constraint tolerance, with the augmented La-
grangian variants requiring fewer iterations. For the medium-
precision case, both iLQR methods failed to achieve the
required tolerance. We hypothesize that the higher-order
information provided by the UDP backup procedure is
responsible for its improved convergence [11]. For tight
constraint tolerances, only UDP-A is able to find a feasible
trajectory.

C. Robotic Arm

The objective for this example is to compute a trajectory
for a Kuka LBR IIWA 14 robotic arm to place a rigid object
onto a shelf while avoiding an obstacle in its workspace.
The state vector is comprised of the 7 joint positions and
velocities. We again used a quadratic cost function with
Q = I14x14, R = 1e−4×I7x7, and QN = 1000×I14x14, with
N = 400, all controls initialized to 0, input constraints of
−200 ≤ u ≤ 200 Nm on each joint, a no collision constraint
with the obstacle, and a final state constraint of xN = xg .
The algorithms were again tested at three different constraint
tolerance values. For the unscented variants, β was set to
1e−4. In all cases, we set our intermediate cost convergence

Low precision: max(c) < 1e−2, initial φ = 1e−1

Iters Cost cx cu µx µu
iLQR-P 272 758.6 2.8e−4 2.9e−6 1e6 1e6

UDP-P 125 727.4 2.0e−3 7.8e−6 1e5 1e5

iLQR-A 109 712.4 3.7e−3 3.2e−3 1e5 1e2

UDP-A 115 707.3 7.6e−3 2.3e−3 1e4 1e2

Medium precision: max(c) < 1e−4, initial φ = 1e−2

Iters Cost cx cu µx µu
iLQR-P 223 764.2 1.4e−3 3.2e−4 1e12 1e12

UDP-P 114 729.6 2.9e−5 2.2e−7 1e10 1e10

iLQR-A 253 712.6 3.3e−4 2.1e−4 1e8 1e5

UDP-A 158 708.8 9.1e−5 1.8e−6 1e8 1e5

High precision: max(c) < 1e−6, initial φ = 5e−3

Iters Cost cx cu µx µu
UDP-P 201 729.6 2.9e−5 2.2e−7 1e11 1e11

UDP-A 149 708.8 5.3e−7 1.7e−7 1e8 1e4

TABLE II
QUADROTOR OPTIMIZATION RESULTS. RED INDICATES FAILURE TO

MEET CONSTRAINT TOLERANCE. SEE TEXT FOR DETAILS.

tolerance to 10 and our final iteration cost tolerance to 1e−2.
A screen shot of the trajectory computed by the constrained
UDP algorithm in the high precision setting is shown in
Figure 4.

Fig. 4. Collision-free Kuka arm trajectory computed by constrained UDP.

Table III contains the results of all trials. As before, all
of the algorithms handled the low-precision case, which pro-
duced similar overall costs. The penalty methods converged
faster, with lower constraint violation, and larger µ values.
Despite their success in the low precision case, however, both
penalty methods failed in the medium precision case. Once
again, in the high precision case, only the constrained UDP
method succeeded. This example further demonstrates how
penalty and iLQR based methods may succeed with loose
constraint tolerances, but the constrained UDP algorithm can
support much more precise constraint satisfaction.

V. CONCLUSION AND FUTURE WORK

We have presented the constrained UDP algorithm, a
DDP variant capable of satisfying nonlinear state and in-
put constraints with high accuracy through the use of an
augmented Lagrangian. Several directions for future research
remain. Combining multiple constraint-handling approaches
may prove beneficial. For example, box constraints on inputs
were captured using cost terms in our experiments. It would
be straightforward to instead use existing QP techniques
in the backward pass to compute input constraints [12],



Low precision: max(c) < 1e−2, initial φ = 5e−1

Iters Cost cx cu µx µu
iLQR-P 50 2161.4 9.5e−3 6.5e−8 1e6 1e6

UDP-P 53 2155.4 8.6e−3 5.1e−8 1e6 1e6

iLQR-A 89 2171.3 7.1e−3 6.1e−3 1e6 1e2

UDP-A 88 2174.9 6.3e−3 5.4e−3 1e6 1e3

Medium precision: max(c) < 1e−3, initial φ = 1e−2

Iters Cost cx cu µx µu
iLQR-P 155 2161.3 9.6e−3 6.2e−3 1e17 1e17

UDP-P 146 2226.8 7.0e−3 5.3e−3 1e12 1e12

iLQR-A 84 2688.4 5.7e−4 1.3e−5 1e8 1e4

UDP-A 82 2674.4 4.2e−4 1.8e−5 1e8 1e4

High precision: max(c) < 5e−5, initial φ = 5e−3

Iters Cost cx cu µx µu
iLQR-A 182 6471.1 5.9e−3 3.8e−5 1e10 1e3

UDP-A 71 2674.7 2.9e−5 7.1e−6 1e10 1e6

TABLE III
KUKA ARM OPTIMIZATION RESULTS. RED INDICATES FAILURE TO MEET

CONSTRAINT TOLERANCE. SEE TEXT FOR DETAILS.

[13], while using augmented Lagrangian terms for state con-
straints. An empirical comparison including barrier methods
in the DDP setting would also be interesting.

As highlighted in prior work on UDP [11], the sigma
point scaling parameter, β, must be chosen ahead of time
for each example. Automatic approaches to setting β remain
an interesting open problem. Similarly, more work is needed
to determine optimal—or even good suboptimal—schedules
for φ and µ. We believe our results could be significantly
improved if more effort was spent exploring update schemes.
Finally, we have not yet optimized our implementation of
constrained UDP to minimize computation time per iteration.
In future work, we will evaluate the suitability of this
algorithm for realtime model predictive control (MPC).
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