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Trajectory Optimization synthesizes dynamic 
motions for complex robotic systems

[DARPA Robotics 
Challenge 2015]

[Al Borno
TVCG 2013]

[Foehn RSS 2017]



Trajectory optimization minimizes a discrete time 
cost function subject to dynamics constraints



Dynamic Programming solves this problem 
through the recursive Bellman equation



DP methods (DDP/SLQ/iLQR) use quadratic 
approximations around a nominal trajectory

1. Compute the cost-to-go and the 
associated optimal feedback control 
update to the controls backward in time

2. Simulate the system forward in time to 
create a new nominal trajectory

3. Repeat this process until convergence



DP methods (DDP/SLQ/iLQR) use quadratic 
approximations around a nominal trajectory

1. Expensive to capture the 2nd order 
information

2. Hard to enforce constraints

Two Historic Problems with DP Algorithms
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Recent research into adding constraints to DP like 
algorithms has taken two general paths

QP Methods
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[Tassa ICRA 2014]
[Xie ICRA 2017]

[Farshidian ICRA 2017]

[van den Berg ACC 2014]
[Farshidian ICRA 2017]

[Neunert RAL 2017]



Quadratic penalty methods are popular but can 
lead to numerical ill conditioning

Penalty Methods
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Augmented Lagrangian methods show promise for 
trajectory optimization problems

Augmented Lagrangian Methods
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UDP takes inspiration from the Unscented Kalman
Filter to approximate the Hessian

[CDC 2016]



UDP takes inspiration from the Unscented Kalman
Filter to approximate the Hessian

[CDC 2016]



Experimentally UDP captures 2nd order information 
with first order per-iteration cost

[CDC 2016]

Pendulum Swing Up Task



Constrained Unscented Dynamic Programming (CUDP)

1. Compute the cost-to-go (including constraint costs) and the 
associated optimal feedback control update to the controls 
backward in time using the unscented transform

2. Simulate the system forward in time to create a new nominal 
trajectory

3. Repeat this process until convergence

4. At convergence test for constraint satisfaction and if not 
update and go back to step 1



Precise constraint satisfaction requires both the 
unscented transform and augmented Lagrangian

Ф < 1e-2 Ф < 1e-4 Ф < 5e-7

Penalty iLQR

Penalty UDP

AL UDP
(CUDP)

AL iLQR

• Torque Limit on motor
• Final state position and velocity constraintConstraints



Precise constraint satisfaction requires both the 
unscented transform and augmented Lagrangian

Ф < 1e-2 Ф < 1e-4 Ф < 1e-6

Penalty 
iLQR

Penalty 
UDP

AL UDP 
(CUDP)

AL iLQR

• Torque Limits on motors
• No-contact constraints with trees
• Final state position and velocity constraint

Constraints



CUDP can pass through constraint boundaries 
during early major iterations



Precise constraint satisfaction requires both the 
unscented transform and augmented Lagrangian

5e-1 Precision 1e-2 Precision 5e-3 Precision

Penalty 
iLQR

Penalty 
UDP

AL UDP
(CUDP)

AL iLQR

• Torque Limits on motors
• No-contact constraints with block and shelf
• Final state position and velocity constraint

Constraints



Constrained Unscented Dynamic Programming

• A derivative-free DDP/iLQR algorithm inspired by 
the Unscented Kalman Filter

• Uses augmented Lagrangian to handle nonlinear 
state and input constraints

• Provides faster convergence and higher 
constraint precision vs iLQR and penalty methods

agile.seas.harvard.edu brian_plancher@g.harvard.edu


