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I. INTRODUCTION

Trajectory optimization algorithms are a powerful set of
tools for synthesizing dynamic motions for complex robots.
Recent work using variants of Differential Dynamic Pro-
gramming (DDP) [1] has shown that online planning for
model predictive control (MPC) is possible for a variety
of practical (and sometimes high-dimensional) robots [2],
[3], [4], [5], [6], [7]. In our own recent work [8], we
conducted a variety of simulation experiments with the
goal of understanding whether computational benefits could
be gained by implementing a parallelized variant of the
iterative Linear Quadratic Regulator (iLQR) [9] on a GPU.
We found that GPU-based solvers can offer increased per-
iteration computation time and faster convergence in some
cases, but in general tradeoffs exist between convergence
behavior and degree of algorithm-level parallelism. Given
these promising observations, we continued this line of work
using our implementation for MPC on a physical Kuka arm
to demonstrate the feasibility of this approach in the presence
of model discrepancies and communication delays between
the robot and GPU. We found that higher control rates
generally lead to better tracking performance across a range
of parallelization options.

II. BACKGROUND

Implementing a parallelized variant of iLQR requires the
exploitation of instruction-level parallelism, (e.g., running
all possible line search iterations in parallel) and algorithm-
level parallelism (modifying iLQR for multiple shooting
and using a block based backward pass). Care must be
taken to minimize memory latency and kernel/process launch
overhead. Our solver implementations and examples can be
found at http://bit.ly/ParallelDDP.

III. SIMULATION EXPERIMENTS

Our initial simulation experiments with the Kuka arm
showed that parallelism greatly increased the speed of the
fully parallelizable Taylor approximations of the dynamics
and cost functions, and increased the speed, with diminishing
returns, of the forward simulation and backward pass. We
found that on the CPU, the backward pass does not improve
beyond where M , the amount of algorithm level parallelism,
is equal to the number of CPU cores. We also found that
increased algorithm level parallelism led to a decreased rate
of convergence caused by increased average line search depth
which led to non-monotonic forward simulation times on the
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CPU. Overall, this tradeoff allowed the GPU to outperform
the CPU as shown in Figure 1.

Fig. 1. Median cost for the first 40 milliseconds of each solve. M indicates
the number of parallel backward pass blocks / multiple shooting intervals.

IV. HARDWARE EXPERIMENTS

We ran a figure eight goal tracking experiment with
the physical Kuka arm sweeping control step duration and
amount of algorithm level parallelism. We warm started the
iLQR algorithm by shifting all variables from the previous
solve by the control step duration and then rolling out a
new initial state trajectory starting from the current measured
state (with a gravity compensating input in the trailing time
steps). Simultaneously, we had another thread executing the
previously computed feedback controller. To initialize the
experiment, we held the first goal pose constant until the 2-
norm of the end effector pose error and joint velocity were
both less than 0.05 at which point the goal began moving
along the figure eight path. Figure 2 shows the Kuka arm
during one of these experiments.

Fig. 2. The Kuka arm during a figure eight goal tracking experiment.

Figure 3 shows the average tracking error plotted against
control step duration. We found that good tracking per-
formance is possible for a wide range of solvers, and a
faster control step duration generally had better tracking
performance. We also found that solvers start to fail when
they had about as many (or less) iterations as the amount
of algorithm level parallelism (e.g., M = 4 with 3 or less
iterations).

http://bit.ly/ParallelDDP


Fig. 3. Tracking error for a range of solvers vs. control step duration.
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