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Rigid Body Dynamics Gradients are a bottleneck
for planning and control (e.g., nonlinear MPC)
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CPUs aren’t getting faster
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* Frequency scaling is
ending (CPUs aren’t
getting faster)

 Massive parallelism on
GPUs may be a solution
for hardware acceleration

[Shao and Brooks “Synthesis Lectures on Computer Architecture” 2015]
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We are actively

* Prismatic, fixed, and revolute joints V;Ofkir;g to expanj
_ these features an
 ID y FD y M 1 welcome community

* VID, VFD withrespecttoq,q,u support in this effort!
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GRID exploits the structure of each robot
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Algorithm 1 VRNEA-F(4, v, a, f, X, S, 1) — Oc/Ou

for frame : =1 : N do
Very serial '

algorithm du A S. W= d
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Algorithm 2 VRNEA-F-GRiD(q, v, a, f, X, S, I) — df/0u
1| for frame 7 = 1 : n in parallel do

o= Xy on B= Xoan =L, Refactor algorithms to
3: a; =o; XS B,i=08;x8; 6 =v; x5 expose para"el Ioops
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?:I for frame 7 = 1 : n in parallel dol

-
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8 pi = 5.5 x Sigi + {
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Algorithm 2 VRNEA-F-GRiD(4, v, a. f, X, S.1) — 0f /0u

1| for frame 7 = 1 : n in parallel do

2: &; = iXAi-U)H ,8'& = IIX}H(IJH "}"t' — I!"Ut'

¥ ai=aixS Bi=BixS &i=uvixS5 expose parallel loops
4 for level [ =0 : Iz do of unified operations
5 for frame 7 € [ in para]}el do
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i u=q
Level O
?:I for frame 7 =1 : n in parallel dol 0
vy . .Bt' o

8 pi= gt x Sigi + | (5 ] Level 1
o for level I = 0 : Ly, do Compute remaining o O 0
10: for frame 7 € [ in parallel do serial Operations N Level 2

T tm iy, T, -
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Refactor algorithms to
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Algorithm 2 VRNEA-F-GRiD(q, v, a, f, X, S,I) — 0f/0u
I: for frame 7 = 1 : n in parallel do

2: a; ="Xy vy, Bi="Xyan =T

3: o = oy X S; ﬁizﬁix& 0 = v; X S
4: for level | =0 :1,,,, do

5

for frame 7 € [ in parallel do
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ou du Si w = q 0

Level 0
7. for frame i = 1 : n in parallel do The branch 0
8: pi = %—;L x Sigi + i structure also o@ Level 1
"' determines sparsity

9: for level [ =0 : l;,4, do in the columns of (2] o 6
10:  for frame i € [ in parallel do Level 2
. oo iy, %o dv, 0a, and of y
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GRID improves both computational
latency and scalability
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GRID improves both computational
latency and scalability
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GRID improves both computational
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robotics algorithms
that use rigid body
dynamics!
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