

Next week’s task is simple:

1. Since the boards you made last week are perfect
and are still in perfect shape and are totally
programmable...

Next week’s task is simple:

1. Since the boards you made last week are perfect

and are still in perfect shape and are totally
programmable...

And since you already know how to code in C...

Next week’s task is simple:

1. Since the boards you made last week are perfect
and are still in perfect shape and are totally
programmable...

2. And since you already know how to code in C...

3. Write some custom code to test a function on your
board!... You did make sure that you can
programmatically change the button and/or LED
right (aka they are connected to PAx)?

Next week’s task is simple:

Since the boards you made last week are perfect
and ar tally

progre So if you are feeling

1.

2.
3.

Anq Si like... :I.e in C...
Write tion on your
board!... YOU did make sure that you can
programmatically change the button and/or LED
right (aka they are connected to PAx)?

= REIAX
t = - |

WE L THIS

One quick aside on boards before we talk

about coding... T

10K 1uF
.8 .V YCC GND CTS

5 (bll)

PRC PAD
<V iz opy 64 P vce

PB3 p2 | J2 FTDI
rpez t#4 pug Tx
A7 PA4
o PAB PAS Rx

2
7
Ji
'SP
o
=

Now onto coding in AVR-C!

So if your first thought is: “What are codes”

Now onto coding in AVR-C!

So if your first thought is: “What are codes”

In short, computer code is a human-readable language which
tells the computer what to do

Now onto coding in AVR-C!

So if your first thought is: “What is AVR-C? | feel like | should
start with A...”

upon which

most modern languages are based (or designed to be
improvements on).

to allow you to program your Attinys.

There are 5 basic datatypes you can use in C
c types 4 Q

All Shopping MNews Videas Images Maore Settings Tools

About 2,040,000,000 resulis (0.49 seconds) Remember for a” thlngs
coding Google and

There are five basic data types associated with variables:
Stackoverflow have

« int - integer: a whole number. MOST of the answers
float - floating point value: ie a number with a fractional part.
double - a double-precision floating point value.

char - a single character.

void - valueless special purpose type which we will examine closely in later
sections.

@ Data Types

https://www.le.ac.uk/users/rjm1/cotter/page_19.htm

@ Aboutthisresult @ Feedback

You assign Variables (aka specific named
instances of a type) to hold data

Int my_age = 28;

char first_initial = 'B’;
char last_initial = 'P’;

You assign Variables (aka specific named
instances of a type) to hold data

Almost everything
ends in semicolons

int my_age = 28; lhs

char first_initial ='B'; pon't forget them!
char last_initial = 'P’;

And everything
needs a type!

You can then use conditional statements to
make decisions about what to do with data

Test expression is true Test expression is false
int test = 5; int test = 5;
if (test < 10) if (test > 10)
> { {
/[codes // codes
} }
else else
{ =
[/ codes [/ codes
} }

- [/ codes after if...else - // codes after if...else

You can then use conditional statements to
make decisions about what to do with data
iInt my_age = 28;
char first_initial = 'B’;
char last_initial = 'P’;
int above drinking_age;

If (age >=21){
above drinking _age = 1;
}else {
above_drinking age = 0;

J

You can then use conditional statements to
make decisions about what to do with data

int my_age = 28;
char first_initial = 'B’;
char last_initial ='P’;

int above_drinking_age; AINITARCIEISE

statements need the

If (age >= 21){ {} around them!
above drinking _age = 1;

}else {
above_drinking age = 0;

J

You can create functions to encapsulate some
operation which you use a lot

int checklID(int age){ int my_age = 28;
If (age >= 21){ char first_initial = 'B’;
return 1; char last_initial = 'P’;

} else { int above drinking _age = checklD(my_age);
return O;

}

}

You can create functions to encapsulate some
operation which you use a lot

int checklID(int age), int my_age = 27;
If (age >=z1)4 char first_initial = 'B’;
return 1; char last_initial = 'P’;
} else { int above_drinking_age = checkID(my_age):

return O;

} When you call a
} function you need to
pass in the variables

which it will use

You can create functions to encapsulate some
operation which you use a lot e

return type for the function
and then make sure to

(int checklID(int age), int my_age =27; return the appropriate thing
ir (age >= 214 char first_initial = 'B’;
return 1; char last_initial = 'P';
eimn ! Int above_drinking_age - checklD(my_age):

return O;
} When you call a
} function you need to
pass in the variables
which it will use

Finally you use loops to repetitively call the
same set of actions

This is an ARRAY which is a

int class_ages|3]; list of some type. In this
case it is 3 ints.

Finally you use loops to repetitively call the
same set of actions

This is an ARRAY which is a
list of some type. In this
case it is 3 ints.
It is zero-index!
int class_ages|3];
class_ages[0] =17; B —
class_ages[1] = 21; BEINERERF
class_ages[2] = 54; Y F 0 % 1

Element-1 Element-2 Element-3 Element-4 Element-5

N\

.‘

Finally you use loops to repetitively call the
same set of actions

int class_ages[3]; We can use a WHILE LOOP
class_ages[0] = 17; to iterate until we hit the
class_ages|[1] = 21; condition

class_ages|[2] = 54;

int index = 0;

while (index < 3){
if (checklID(class_ages[index])){
letintoBar();

}

index = index + 1;

)

Finally you use loops to repetitively call the
same set of actions

int class_ages[3];
class_ages[0] = 17;
class_ages|[1] = 21;
class_ages|[2] = 54;
int index = 0;

while (index < 3){
if (checklID(class_ages[index])){
letintoBar();

}

index++;

)

We can use a WHILE LOOP
to iterate until we hit the
condition

We can shorthand
index = index + 1;
to:

index+=1;

or:

Index++;

Finally you use loops to repetitively call the
same set of actions

DON’T
FORGET
THE ++

int class_ages[3];
class_ages[0] = 17;
class_ages|[1] = 21;
class_ages|[2] = 54;
int index = 0;
while (index < 3){

}

if (checklID(class_ages[index])){
letintoBar();

}

index++;

We can use a WHILE LOOP
to iterate until we hit the
condition

We can shorthand
index = index + 1;
to:

index+=1;

or:

Index++;

Finally you use loops to repetitively call the
same set of actions

We can use a FOR LOOP to
int class_ages|3]; shorthand the while loop
class_ages[0] = 17; and make sure we don’t

class_ages[1] = 21; forget the ++

class _ages[2] = 54;
for (int index = 0; index < 3; index++){
if (checklID(class_ages[index])){
letintoBar();

}

)

And that is
programming

INCin a
nutshell

Wait so what did we learn?

Int my age = 28;

1. We use variables to store information

Each variable has a type (int, char, float, double)

3. We can create arrays of variables to group multiple
things of the same type together

4. We use conditional statements (if, else) to branch our
code depending on the data

5. We create functions to encapsulate common operations

6. We use loops (while, for) to repetitively call the same
set of actions

N

int class_ages|3];
Wait so what did we learn? class_ages[0] = 17;
class_ages[1] = 21;
1. We use variables to store information | class_ages[2] = 54,
2. Each variable has a type (int, char, float, double)

4. We use conditional statements (if, else) to branch our
code depending on the data

5. We create functions to encapsulate common operations

6. We use loops (while, for) to repetitively call the same
set of actions

If (age < 21){

Wait so what did we learn? return 1;
} else {
1. We use variables to store information return O;
2. Each variable has a type (int, char, float, dou }
3. We can create arrays of variables to group multiple
things of the same type together

5. We create functions to encapsulate common operations
6. We use loops (while, for) to repetitively call the same

set of actions

int checkID(int age){
If (age < 21){

Wait so what did we learn? return 1;
} else {

1. We use variables to store information return 0;

2. Each variable has a type (int, char, float, dot}

3. We can create arrays of variables to group multiple
things of the same type together

4. We use conditional statements (if, else) to branch our
code depending on the data

6. We use loops (while, for) to repetitively call the same

set of actions

intindex = 0;
while (index < 3){

Wait so What d|d We |ea rn? if (checkID(class_ages[index])){

N

letIntoBar();
}

We use variables to store informatio
index++

Each variable has a type (int, char, fl

We can create arrays of variables to group multiple
things of the same type together

We use conditional statements (if, else) to branch our
code depending on the data

We create functions to encapsulate common operations

Ok but how does a

program know what
function to run?

All C programs when run will automagically
invoke a special function called main

int main()

{

("Hello World");

All C programs when run will automagically
invoke a special function called main

By conven-
tion it

int main()

returns an
int as an
error code

All C programs when run will automagically
invoke a special function called main

main can call
all of your
other

By conven-
tion it

int main()

functions
(and included
external
functions)

returns an
int as an
error code

All C programs when run will automagically
invoke a special function called main

main can call
all of your
other

By conven-
int main()

tion it {
returns an ("Hel

functions
(and included
external
functions)

Int as an

error code Here we are calling printf
which sends text to the console
(a really easy way to debug!)

All C programs when run will automagically
invoke a special function called main

Printf can not only print hard coded ain can call

By conven: strings but also the values of variables | of your
tion it her

returns an nctions

nd included
ternal
functions)

Int as an

error COde 1 ITICT VVC dI T LClllllls Pl I1L1
which sends text to the console

(a really easy way to debug!)

Ok great so | type code
in, call it from main,

and then the computer
just runs it right?

Ok great so | type code
in, call it from main,

and then the computer
just runs it right?
Well not exactly...

We first need to compile the code from words
into Os and 1s

We first need to compile the code from words
into Os and 1s

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE’S COMPILING.”

HEY! GETBACK 1™
TO WORK!

We first need to compile the code from words
into Os and 1s

The beauty of this is that

compilers are written for you
and you can just use them!

We first need to compile the code from words
into Os and 1s

The beauty of this is that
compilers are written for you
and you can just use them!

In this class you’ve already
compiled code with make

! akaziuna@Titan:~/Desktop/firmwareS make hex

iavr—gcc -Wall -0Os
| —mmcu=attiny44 -c
avr—-gcc -Wall -0Os
-mmcu=attiny44 -x
avr—-gcc —-Wall -0Os
-mmcu=attiny44 -c
avr—-gcc —-Wall -0Os
-mmcu=attiny44 -c
avr-gcc —-Wall -0Os
-mmcu=attiny44 -o
main.o

avr-size main.hex
text data
0] 2020

—DF_CPTJ:.ZOOOOOOO —Iusbdrv -I. —DDEBUG_LEVEL=O
usbdrv/usbdrv.c -o usbdrv/uskdrv.o

—DF_CPUZZUOOOOOO —Tusbdrv -I. —DDEBUG_LEVELZO
assembler—with-cpp -c¢ usbdrv/usbdrvasm.S -o usbdrv/usbdrvasm.o
—DF_CPUZZOOOOOOO —Iushbdrv -I. —DDEBUG_LEVELZO
usbdrv/oddebug.c -o usbdrv/oddebug.o

—DF_CPU=ZOOOOOOO —Iusbdrv —-I. —DDEBUG_LEVEL=O

main.c —o main.o

—DF_CPU=ZOOOOOOO —Iusbdrv —-I. —DDEBUG_LEVEL=O

main.elf usbdrv/usbdrv.o usbdrv/usbdrvasm.o usbdrv/oddebug.o

rm -f main.hex main.eep.hex
avr-objcopy —-j .text -j .data -0 ihex main.elf main.hex

hex filename
7ed main.hex

bss dec
0 2020

Eakaziuna@Titan:~/De5ktop/firmware$ sudo make fuse
i avrdude -c usbtiny -p attiny44 -U hfuse:w:0xDF:m —U 1lfuse:w:0xFF:m

Eavrdude: AVR device initialized and ready to accept instructions

We first need to compile the code from words
into Os and 1s

One thing to keep in mind is code is
compiled TOP DOWN - so any helper
functions, variables, etc. need to be

written ABOVE wherever they are used!
This is why we need to #include all
external code first!

We first need to compile the code from words
into Os and 1s

One tfmane
compi

int main()

functic - |

! ("Hello World");
writtel

This is
extern

Lets work together on a programming
example!

1.

In one tab open:
https://www.onlinegdb.com/online ¢ compiler

which is an online console and compiler!

4 | OnlineGDB b=t Microsoft Azur

Click run to compile and run it!

code. compile. run. debug. share. ik

IDE
My Projects
Learn Programming
Programming Questions
Sign Up
Login

int main()

f ||+ = 12- ¢

("Hello World");

| e Code can be typed
) in here!

Students and Teachers,
save up to 60% on Adobe
Creative Cloud.

ADS VIA CARBON v 7 5 input
Hello World

.. .Program finished with exit code 0

S Output is here

it » FAQ = Blog = Terms of Use = Contact Us * GDB

Lets work together on a programming
example!

1.

In one tab open:
https://www.onlinegdb.com/online ¢ compiler

which is an online console and compiler!

In the other open:
http://bit.ly/HTM sample code
which some starter code | wrote.

Lets work together on a programming
example!

1.

In one tab open:
https://www.onlinegdb.com/online ¢ compiler

which is an online console and compiler!

In the other open:
http://bit.ly/HTM sample code
which some starter code | wrote.

Copy and paste the starter code into the online
compiler!

¥ s vy - w

P Run | ®Debug | W Stop

TBD add(TBD){

}

int main()

e ("Hello Welcome to My Calculator!\n"); YO u r Scree n
o e should look

TBDresult add(TBD) et Iike th iS !

with TBD\n");

BD -

am adding: TBD
tis: T

"My result is

v 7

Command line arguments:

Ctandard Inniit: (@ Intaractiva Canenla

P Run | ®Debug | W Stop

5 TBD add(TBD){

}

int main()

:; {

TBD valuel TBD
TBD value2 TBD

TBD result .add(TBDj

Command line arguments:

Ctandard Inniit: (@ Intaractiva Canenla

Y] 7 I - . Myr M=y
("Hello Welcome to My Calc

- Now lets work

on this with
the person
sitting next to
you!

Lets work together on a programming
example!

One example solution can be found at:

http://bit.ly/HTM sample code sol

Ok so now that we have a little
comfort with C lets explore AVR-

C by building up / walk through
Neil's hello.ftdi.44.echo.c to
explore AVR C code

1) what is the program

trying to do?

1) what is Listen to whatever

alshelgeluzlngl | you type and then
wailalaierelet echo it back to you.

1) w

the
tryin

- term.py

quit
port: /dev/ttyUSBO speed: 115200

hello.ftdl.44.echo.c: you typed "h"

hello.ftdi.44.echo.c: you typed "hell”
hello.ftdi.44.echo.c: you typed "hello”
hello.ftdi.44.echo.c: you typed "hello "
hello.ftdi.44.echo.c: you typed "hello w"
hello.ftdl.44.echo.c: you typed "hello wo"
hello.ftdi.44.echo.c: you typed "hello wor"
hello.ftdl.44.echo.c: you typed "hello worl™
hello.ftdl.44.echo.c: you typed "hello world"

wer
hen
youl.

1) what is Listen to whatever
alshelgelazlng . you type and then

wailalaierelet echo it back to you.

Lets try to code this up in
pseudo-code!

(ORIErs Badss s Listen to whatever you
program type and then echo it
trying to do? back to you.

Lets try to code this up in
pseudo-code!

REPEAT FOREVER {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

(ORIErs Badss s Listen to whatever you
program type and then echo it
trying to do? back to you.

Lets try to code this up in
pseudo-code!

REPEAT FOREVER {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

We want our Attiny to repeat forever as a simple
loop can occur thousands of times a second!

Lets slowly replace all of these
words with the code we need to
get it to work on the ATTiny

REPEAT FOREVER {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

Remember “while” defines a LOOP (can also use “for”)

“while” will run until the condition in the “()” is FALSE
so in this case it runs forever as 1 is always TRUE

while (1) {
Read 1n the next character the user types
Save it to the end of an array (lets call it BUFFER)

Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

Remember “while” defines a LOOP (can also use “for”)

“while” will run until the condition in the “()” is FALSE
so in this case it runs forever as 1 is always TRUE

ad Th the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

In general we write all of the code that we want
the AVR to do inside a while(1) loop

}

It turns out that a C program always starts by running a
special function called “main”

Remember a function is an encapsulated block of code

int main (void)]{

While
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

So we need to wrap our while loop in a “main”
function if we want it to actually run forever!

It turns out that a C program always starts by running a
special function called “main”

Remember a function is an encapsulated block of code

int main (void)}{

WhiTe
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

“main” always returns an integer (that’s just a C standard) and for
our purposes it doesn’t take any inputs and thus the use of “void”

In theory we therefore need the “return 0” but since we never exit
the while loop main will never return so Neil omits it for brevity

s

s

// hello.ftdi.44.echo.c

s

// 115200 baud FTDI character echo, with flash string
s

// set 1lfuse to 0x5E for 20 MHz xtal

s

// Neil Gershenfeld

// 12/8/10

s

// (c) Massachusetts Institute of Technology 2010

s
s
s
//
//

This

work may be reproduced, modified, distributed,

performed, and displayed for any purpose. Copyright is
retained and must be preserved. The work is provided

as is; no warranty is provided, and users accept all
liability.

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>

#define
#define
#define
#define
#define
#define
#define
#define
#define

output (directions,pin) (directions |= pin) // set port dir

set (port,pin) (port |= pin) // set port pin

clear (port,pin) (port &= (~pin)) // clear port pin
pin_ test (pins,pin) (pins & pin) // test for port pin
bit test (byte,bit) (byte & (1 << bit)) // test for bit set

bit delay time 8.5 // bit delay for 115200 with overhead

bit delay() _delay us(bit delay time) // RS232 bit delay
half bit delay() _delay us(bit delay time/2) // RS5232 half
char delay() _delay ms(10) // char delay

// this is a single line comment
/*

This is a multi

line comment

*/

If we look at Neil’s final code we will
see that he starts with a big long

comment — because comments are
helpful! Trust me you want to
comment A LOT. It makes it much
easier to debug. You will be happy
later! | promise!

Note: comments are for humans
they are invisible to the computer!

bit delay

So lets add some comments to our code!

// the function that actually gets run

int main (void) {
// repeat forever
while (1) {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

Ok so then now how do we actually start to replace the
words with code?

// the function that actually gets run

int main (void) {
// repeat forever
while (1) {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

Lets use some HELPER FUNCTIONS (that do the work for us)

RETURN_TBD get_char (INPUTS_TBD) {CODE_TBD;} | [hii sl e eiions

RETURN_TBD put_char(INPUTS_TBD) {CODE_TBD;} this program and their
RETURN_TBD put_string(INPUTS_TBD) {CODE_TBD; } [1Eia=s ey AWaE = Aol

(note: this is good coding

(/ the.functjon that actually gets run practice!)
int main (void) {
// repeat forever
while (1) {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

Since C code gets “compiled” (turned from code to Os and
1s for the computer to use) top down if we want to define
any “helper functions” they need to appear before the
main (as the main will call them to use them)

Neil defines these 3 for

RETURN_TBD get_char (INPUTS_TBD){CODE_TBD;} : :
RETURN_TBD put_char(INPUTS_TBD){CODE_TBD;} [il sleeeleliiclileninicils
RETURN_TBD put_string(INPUTS_TBD){CODE_TBD; H | iEliplcs) AN el el

(note: this is good coding

// the function that actually gets run
int main (void) {
// repeat forever
while (1) {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

practice!)

}

Since C code gets “compiled” (turned from code to Os and
1s for the computer to use) top down if we want to define
any “helper functions” they need to appear before the
main (as the main will call them to use them)

RETURN_TBD get_char (INPUTS_TBD) {CODE_TBD;} | [hii sl e eiions

RETURN_TBD put_char(INPUTS_TBD) {CODE_TBD;} this program and their
RETURN_TBD put_string(INPUTS_TBD) {CODE_TBD; } [1Eia=s ey AWaE = Aol

(note: this is good coding
practice!)

Side note: put_string is the
closest thing to printf for our
AVRs as we can see the printed RaLEE

s call it BUFFER)
value on the console! vou typed” + BUFFER

Since C code gets “compiled” (turned from code to Os and
1s for the computer to use) top down if we want to define
any “helper functions” they need to appear before the
main (as the main will call them to use them)

Neil defines these 3 for

RETURN_TBD get_char (INPUTS_TBD){CODE_TBD;} : :
RETURN_TBD put_char(INPUTS_TBD){CODE_TBD;} | il sleeleliniclileninislls
RETURN_TBD put_string(INPUTS_TBD){CODE_TBD;} | iEliplosi el ANiEail=iele

(note: this is good coding

// the function that actually gets run
int main (void) {

V/vﬁ_repeit forever Lets use them to help
: i ines!
Read in the next character the user types with these lines!

ne_end o1t an arrav (lets cal

hen Display “hello.ftdi.44 echo.c: vou typed’” + BUFFER

practice!)

Since C code gets “compiled” (turned from code to Os and
1s for the computer to use) top down if we want to define
any “helper functions” they need to appear before the
main (as the main will call them to use them)

We want to get the
RETURN_TBD get_char(INPUTS_TBD) {CODE_TBD;}

RETURN_TBD put_char(INPUTS_TBD){CODE_TBD;} | hGlClelmicliiyi= s
RETURN_TBD put_string(INPUTS_TBD) {CODE_TBD;} |clilehialeiirianiaiail
TBD) and then put the
// the function that actually gets run default string and the
int main (void) {
// repeat forever

TB get char(TBD);

buffer out to the user

= put_ str1ng(he]]d ftd1‘44 echo. cl you typed”, TBD);
put_string(BUFFER, TBD)

Since C code gets “compiled” (turned from code to Os and
1s for the computer to use) top down if we want to define
any “helper functions” they need to appear before the
main (as the main will call them to use them)

We want to get the
RETURN_TBD get_char(INPUTS_TBD) {CODE_TBD;}

RETURN_TBD put_char(INPUTS_TBD){CODE_TBD;} | hGlClelmicliiyi= s
RETURN_TBD put_string(INPUTS_TBD) {CODE_TBD;} |cliehiaeiirianiaiail
TBD) and then put the
// the function that actually gets run default string and the
int main (void) {
// repeat forever

TB get char(TBD);

buffer out to the user

= put_ str1ng(he]]d ftd1‘44 echo. cl you typed”, TBD);
put_string(BUFFER, TBD)

Ok but what should all the
types and input/outputs be?

void get char(veolatile unsigned char *pins, unsigned char pin, char *rxbyte) {
/
// read character into rxbyte on pins pin
'y assumes line driver (inverts bits)
/7
LOTS OF STUFF WENT HERE

}

void put char(veolatile unsigned char *port, unsigned char pin, char txchar) {
’/

// send character in txchar on port pin

'y assumes line driver (inverts bits)
/’r

// start bit

/

LOTS OF STUFF WENT HERE
}

vold put string(velatile unsigned char *port, unsigned char pin, char *str) {
s
// print a null-terminated string
!/
LOTS OF STUFF WENT HERE

}

Here are Neil’s functions. He did

a ton of work for you so that this
just magically if you use the baud
rate 115200 (like from last week).

If you want at a later date we can
talk about “bit-banging” but just
know that this works and you can
just use it to send characters. It
even will work between two
different Attinys.

Also don’t worry about “static” or
“volatile” or “unsigned” for now
—they are complex type things
we can get into at another date

void get char(veolatile unsigned char *pins, unsigned char pin, char *rxbyte) {
/
// read character into rxbyte on pins pin
'y assumes line driver (inverts bits)
/7
LOTS OF STUFF WENT HERE

}

void put char(veolatile unsigned char *port, unsigned char pin, char txchar) {
’/

// send character in txchar on port pin

'y assumes line driver (inverts bits)

/7

;’j start bit But what are these ports and
LOTS OF STUFF WENT HERE pins he is talking about?!?

}

vold put string(velatile unsigned char *port, unsigned char pin, char *str) {
s
// print a null-terminated string
!/
LOTS OF STUFF WENT HERE

}

Here are Neil’s functions. He did

a ton of work for you so that this
just magically if you use the baud
rate 115200 (like from last week).

If you want at a later date we can
talk about “bit-banging” but just
know that this works and you can
just use it to send characters. It
even will work between two
different Attinys.

Also don’t worry about “static” or
“volatile” or “unsigned” for now
—they are complex type things
we can get into at another date

DREA AEGIETER MATA DHAL
REG.PCHATH

i

POAT B DRANERS

T

PR

PDIP/SOIC

VCe [1
(PCINTB/XTAL1/CLKI) PBO [2
(PCINTY/XTAL2) PB1 []3
(PCINT11/RESET/dW) P83 [] 4
(PCINT10/INTO/OCOA/CKOUT) PB2 []5
(PCINT7/ICP/OCOB/ADC7) PA7 |6
(PCINTE/QOC1A/SDA/MOSI/DI/ADCE) PAG [] 7

L)

14
13
12

|| GND

| PAO (ADCO/AREF/PCINTO)

1 PA1 (ADC1/AING/PCINT1)

| PA2 (ADC2/AINT/PCINTZ)

| PA3 (ADC3/TO/PCINT3)

|1 PA4 (ADC4/USCK/SCL/T1/PCINT4)
1 PAS (ADCS/DO/MISC/OC1B/PCINTS)

Remember from last time (electronics
design) that the data sheet describes
all of the ports and their names and

what pins they are etc.

e e o v A e e e i e e e

B i o

DREA AEGIETER MATA DHAL
REG.PCHATH

i

POAT B DRANERS

But then do | have to memorize
them for every function call that

seems tedious!

PDIP/SOIC

vee [
(PCINTS/XTAL1/CLKI) PBO [
(PCINTS/XTAL2) PB1 []
(PCINT11/RESET/dW) PB3 []
(PCINT10/INTO/OCOA/CKOUT) PB2 [
(PCINT7/ICP/OCOB/ADCT7) PA7 [

(PCINTE/OC1A/SDA/MOSIDIVADCE) PAE [

1
2
3
4
5
6
o

S

14
13
12

|1 GND

|| PAD (ADCO/AREF/PCINTO)

1 PA1 (ADC1/AING/PCINT1)

| PA2 (ADC2/AINT/PCINTZ)

| PA3 (ADC3/TO/PCINT3)

|1 PA4 (ADC4/USCK/SCLT1/PCINT4)

] PAS (ADCS/DO/MISO/OC1B/PCINTS)

Remember from last time (electronics
design) that the data sheet describes
all of the ports and their names and

what pins they are etc.

#define
#define
#define
#define
#define

serial port PORTA

serial direction DDRA
serial pins PINA
serial pin in (1 << PAO)
serial pin out (1 << PAl)

Of course not! Just like Neil, you can just “#define” then and then you
can use the descriptive names later!

In this case we have two pins in use on PORTA direction DDRA:
e one for communication in (PAO)
e one for communication out (PA1)

#define
#define
#define
#define
#define

serial port PORTA

serial direction DDRA
serial pins PINA
serial pin in (1 << PAO)
serial pin out (1 << PAl)

Of course not! Just like Neil, you can just “#define” then and then you
can use the descriptive names later!

In this case we have two pins in use on PORTA direction DDRA:
e one for communication in (PAO)
e one for communication out (PA1)

Side note the << is a bit shift but you
don’t really have to worry about it for
now and simply use it! :-)
(Google bit masking if you are curious)

So lets add the ports and pins into the code!

#define serial_direction DDRA
#define serial_pins PINA

#define serial_pin_in (1 << PAO)
#def1ne ser1a1 pin_out (1 << PAl)

nar *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_ char(vo1at11e unsigned char “port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

// the function that actually gets run
int main (void) {
// repeat forever
whi
get_char(&serial_pins, serial_pin_in, CHAR);
LAV 91T _1tTon tTho ond ot an arravyy (larc ol 91+ B
put_string(&serial_port, serial_pin_out, “hello. ftd1 44 .echo.c: you typed”);
put_string(&serial_port, serial_pin_out, BUFFER)

So lets add the ports and pins into the code!

But wait what are all of the

#define serial_direction DDRA
- o V24 o
#define serial_pins PINA &”s dOlng?
#define serial_pin_in (1 << PAO)
#def1ne ser1a1 pin_out (1 << PAl)

nar *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_ char(vo1at11e unsigned char ~port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

// the function that actually gets run
int main (void) {
// repeat forever
whi

get_char(&serial_pins, serial_pin_in, CHAR);

Cav/o 71T T Tho ohd ot 9N _arrayvy (lotTc ~a | 71T B

put_string(&serial_port, serial_pin_out, “hello. ftd1 44 .echo.c: you typed”);

put_string(&serial_port, serial_pin_out, BUFFER)

Pointer FUN?!

wvar => S0
ptr -> 1001

gvar -> 1001
*ptr -> 50

* (gvar) -> 50

//
//
/7
//
//
/7
//

+ Pointer FUN?!
1001 2047

var ptr
(normal variable) (pointer)

the wvariable itself has the wvalue 50

the wvalue of the ptr is the address of what it points
to and therefore since it points to wvar it is 1001

& operator gets us the adress of that wvariable

* poperator evaluates a polnter to get the walue

at this address

The wvalue at the address of var is Just 1ts wvalue

1001 2047 Hmm this is a

little complicated

do | need to
remember all of
this right now?

var ptr
(normal variable) (pointer)
wvar => S0 // the wvariable itself has the wvalue 50

ptr -> 1001 // the wvalue of the ptr is the address of what it peoints
é é f f // to and therefore since it points to wvar it is 1001
&var -> 1001 // & operator gets us the adress of that wariable
*ptr -> 50 // * operator evaluates a polnter to get the wvalue
f i é ; // at this address
*(&var) -> 50 // The wvalue at the address of wvar is jJust 1ts wvalue

void get char(volatile unsigned char *pins, unsigned char pin,jchar *rxbytel]] {

char *pins means pointer to a char (as a type). So we need to
pass it the address of the pins (turning the value into a pointer)

And then we’ll need to pass it a pointer to a char to store the
letter the user types into. This is called a “side effect” and is why
the function is “void” (returns nothing)

So we’ll just do:

get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);

void get char(volatile unsigned char *pins, unsigned char pin,jchar *rxbytel]] {

C to
p Ok but this still seems like a lot to remember — oh wait :er)
we have Neil’s example code and WE CAN JUST BASE
OUR CODE ON HIS FOR NOW UNTIL WE FULLY e

UNDERSTAND IT!!! ~hy

)

get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);

Ok so the * and & thing isn’t that scary and the function
definitions tell us what to do and we can use Neil’s
examples for now!

#define serial_direction DDRA

#define serial_pins PINA

#define serial_pin_in (1 << PAO)

#define serial_pin_out (1 << PAl)

void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

// the function that actually gets run
int main (void) {
// repeat forever
whi
get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
CAVv/ie 91T To The ond ot a9n array (laorc ol 1 91T RIIEEER]
put_string(&serial_port, serial_pin_out, “hello.ftdi .44 echo.c: you typed’);
put_string(&serial_port, serial_pin_out, BUFFER)

Ok so the * and & thing isn’t that scary and the function
definitions tell us what to do and we can use Neil’s
examples for now!

Side note: turns out a string is a
character array and an array is just a

#define serial_direction DDRA pointer to the start of the array

#define serial_pins PINA
#define serial_pin_in (1 << PAO)

#define serial_pin_out (1 << PAL) But again copy Neil’s examples!
void get_char(volatile unsigned char *pins, unsigned char pin, g i e

void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

// the function that actually gets run
int main (void) {
// repeat forever
whi
get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
CAVv/ie 91T To The ond ot a9n array (laorc ol 1 91T RIIEEER]
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed’);
put_string(&serial_port, serial_pin_out, BUFFER)

Ok fine but one other thing — how does the computer know
what “PA0” and “PA1” mean?

#define serial_direction DDRA

#define serial_pins PINA

#define serial_pin_in (1 << PAO)

#define serial_pin_out (1 << PAl)

void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

// the function that actually gets run
int main (void) {
// repeat forever
while (1) {
get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed’);
put_string(&serial_port, serial_pin_out, BUFFER)

Ok fine but one other thing — how does the computer know
what “PA0” and “PA1” mean?

Good point —its doesn’t but if we

#include <avr/io.h> “« ” .
#include <util/delay.hs include” the avr library then we reuse
#include <avr/pgmspace.h> the avr defaults that someone else

e e eEr e BT=BORA wrote in our code. In this case it
#define serial_pins PINA

#define serial_pin_in (1 << PAO) happens to define DDRA and PINA and
#define serial_pin_out (1 << PAl) PAO and PA1!

void get_char(volatile unsigned char *pins, unsigned char pin
void put_char(volatile unsigned char *port, unsigned char pin

void put_string(volatile unsigned char *port, unsigned char pESj[e[eNale)d=R\[IINVELNG (S EWA SR Ta R oK o[< o1l

functions which is why that is there too!
// the function that actually gets run

int main (void) {

// repeat forever

while (1) {
get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44 . echo.c: you typed”);
put_string(&serial_port, serial_pin_out, BUFFER)
}

Lets hide all of the helper functions and #defines for a
minute and finish building out our main function! First by
specifying local variables.

We define our local variables outside
the loop so that they exist forever.
Variables defined inside the loop will
#define BUFFER_SIZE 24 get re-created and their values re-set

the function that actuall ets run .
{ﬁt main (void) { 7o each time the loop happens!

static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;

while (1) {
get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44 echo.c: you typed’);
put_string(&serial_port, serial_pin_out, BUFFER)

Lets hide all of the helper functions and #defines for a
minute and finish building out our main function! First by
specifying local variables.

We define our local variables outside
the loop so that they exist forever.
Variables defined inside the loop will
#define BUFFER_SIZE 24 get re-created and their values re-set

// the function that actuall ets run .
int main (void) { o each time the loop happens!

static char chr;
static char buffer[BUFFER_SIZE] = {0}; We initialize both the current buffer size

Staﬁ nt Size = 0; and buffer to 0 (aka nothing is there)
while (1) {
get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44 echo.c: you typed’);
put_string(&serial_port, serial_pin_out, BUFFER)

Lets hide all of the helper functions and #defines for a
minute and finish building out our main function! First by
specifying local variables.

We define our local variables outside
the loop so that they exist forever.
Variables defined inside the loop will

#define BUFFER_SIZE 24 get re-created and their values re-set
// the function that actually gets run . l
int main (void) { each time the loop happens!

static char chr;
static char buffer[BUFFER_SIZE] = {0}; We initialize both the current buffer size

static int size = 0; and buffer to 0 (aka nothing is there)

get_char(&serial_pins, serial_pin_in, &char);
adV U - - U U d d d - d 5

: you typed”);

We can then use the local variables in the loop!

Now lets finish the main part of the loop by
adding the char to the buffer!

#define BUFFER_SIZE 24

// the function that actually gets run

int main (void) {
// local variables to use in our Tloop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
while (1) {

Save it to the end of an array (lets call it BUFFER)

e I e T or "4 .echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)

Now lets finish the main part of the loop by
adding the char to the buffer!

#define BUEFER SIZE 24 Buffer is an ARRAY (list) of char
// the function that actually gets run

int main (void) {
// local variables to use in our Tloop
static char chr; num{0] num(l] num(2] num(3] numid]
static char buffer[BUFFER_SIZE] = {0}; 5 = . . .
static int size = 0;
// repeat forever

while (D { T T r f T

=Rass pin_in, &char); Element-1 Element-2 Element-3 Element-4 Element-5
buffer[size++] chr; \\\
if (size == (BUFFER_SIZE-1)) ;

UL Ng(&Sertal_porc, sertal_pin_out, “helld . .
put_string(&serial_port, serial_pin_out, buffe +t+ 1S Shorthand fOI’.

buffer[size] = chr;
size = size + 1;

Now lets finish the main part of the loop by
adding the char to the buffer!

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {
// local variables to use in our Tloop
static char chr;

static char buffer[BUFFER_SIZE] = {0};
static int size = 0;

// repeat forever

while (1) {

buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))
PDOT

— [er Al __ y
put_string(&serial_port, serial_pin_out,

dl_pin_out, °

We then have a conditional IF ELSE
statement (in this case just an if)

Neil is using this to say if you reach
the end of the buffer go back to the
beginning and loop around!

For example if BUFFER_SIZE = 4 and
we add the alphabet we get:

[alololo] -> [a,b,0,0] -> [a,b,C,O] ->
[a,b,c,d] -> [e,b,c,d] -> [e,f,C,d]

Now lets finish the main part of the loop by
adding the char to the buffer!

We then have a conditional IF ELSE

’ Neil doesn’t have {} because he only statement (in this case just an if)
1 has one line after his IF (this is a

shortcut) — | would suggest ALWAYS Neil is using this to say if you reach
using {} to be safe! the end of the buffer go back to the

beginning and loop around!

nin_in, &cha

buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

For example if BUFFER_SIZE = 4 and
we add the alphabet we get:

DUC_ glasSertdi_porce, sertdl_pin_out,
put_string(&serial_port, serial_pin_out,

[alololo] -> [alblolo] -> [alblclo] ->
[alblcld] -> [elblcld] -> [elflcld]

So now we have a relatively complete main loop
but there are a couple of things missing that are in
Neil’s code so lets take a look at them!

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {
// local variables to use 1in our Tloop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
while (1) {
get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))
size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44 echo.c: you typed’);
put_string(&serial_port, serial_pin_out, buffer)

So now we have a relatively complete main loop
but there are a couple of things missing that are in
Neil’s code so lets take a look at them!

#define BUFFER_SIZE 24 Why is new line a 10?!?
// the function that actually gets run
int main (void) {

// Tocal variables to use in our Toop (and why does the new line not work
static char chr;

i ?
static char buffer[BUFFER_SIZE] = {0}; on all windows computers?)
static int size = 0;

// repeat forever
while (1) {
get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))
size = 0;
put_string(&serial_

Dec Hex Oct Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr

00 000 NULL 32 20 040 Space 6440 100 @ 96 60 140 	¢;
11 001 Start of Header 33 21 041 ! ! 65 41 101 A 97 61 141 a
22 002 Start of Text 34 22 042 " " 66 42 102 B 98 62 142 b
33 003 End of Text 35 23 043 # # 67 43 103 C 99 63 143 c
44 (004 End of Transmission 36 24 044 $ $ 68 44 104 D 100 64 144 d
55 005 Enquiry 37 25 045 %, % 69 45 105 E 101 65 145 e
6 6 006 Acknowledgment 38 26 046 &, & 70 46 106 F 102 66 146 f
77 007 Bell 39 27 047 ' ' 71 47 107 G 103 67 147 g
8 8 010 Backspace 40 28 : H 104 68 150 h
0 9 (011 Horizgntal Ta 41 29 I 105 69 151 i
10 A (Ol Llinefeed _J§ 422A J 106 6A 152 j
B U rrical rar 43 2B K 107 6B 153 k,
014 Form faed 44 2C L 108 6C 154 l

13 D 015 Carriage return 45 2D M 109 6D 155 m

> N<LXSs<CHUNDOTVOZZIFASTTIOTMON®TP(H
!N X< CcHWWSO0UTOSI3 AT TToSQ OO0 T

010 Ou 46 2E N 110 6E 156 n
15 F 017 ShiftIn 47 2F 111 6F 157 o
16 10 020 Data Link Escape 48 112 70 160 p
17 11 021 Device Control 1 49 3 cr) 11371 161 q
18 12 022 Device Control 2 g Cool I seeit’sa 10 but 11472 162 r
19 13 023 Device Control 3 51 3 3 11573 163 &%#115;
20 14 024 Device Control 4 ¥ Wwhatsan Aora012; 116 74 164 t
21 15 025 Negative Ack. 53 D; 117 75 165 u,
22 16 026 Synchronous idle 54 36 066 6 6 86 56 126 V 118 76 166 v
23 17 027 End of Trans. Block 55 37 067 7 7 87 57 127 W 119 77 167 w
24 18 030 Cancel 56 38 070 8 8 88 58 130 X 120 78 170 x
25 19 031 End of Medium 57 39 071 9 9 89 59 131 Y 121 79 171 y
26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z 122 7A 172 z
27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 [123 7B 173 {
28 1C 034 File Separator 60 3C 074 < < 92 5C 134 \ 124 7C 174 |
29 1D 035 Group Separator 61 3D 075 =, = 93 5D 135] 125 7D 175 }
30 1E 036 Record Separator 62 3E 076 >, > 94 5E 136 ^ 126 7E 176 ~
31 1F 037 Unit Separator 63 3F 077 ? ? 95 5F 137 _ _ 127 7F 177 Del

asciichars.com

Its just counting in different basses!

reranTrerenil ooy | o W by | e

0 oo 0000 0 1000 8
1 ool 0001 1 1001 9
F oLo 0010 2 1010 A
2 011l 0011 3 1011 B
c: 100 0100 4 1100 C
g ﬂ; 0101 5 1101 D
- T11 0110 6 1110 E

0111 7 1111 F

Now our main loop is complete but we are still
missing two things from our program:
Setting the Clock and Initializing the Pins!

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {
// local variables to use 1in our Tloop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
while (1) {
get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))
size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44 echo.c: you typed’);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

Now our main loop is complete but we are still
missing two things from our program:
Setting the Clock and Initializing the Pins!

// set the clock divider to /1
CLKPR = (l << CLKPCE);
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0O << CLKPS0);

set(serial_port, serial_pin_out);
output(serial_direction, serial_pin_out);

// local variables to use in our Toop What in the world is all of this?... Read
static char chr;

static char buffer[BUFFER_SIZE] = {0}; the datasheet! (and don’t change it for
static int size = 0; ’
7/ repeat forever now — you don’t have to)
while (1) {

get_char(&serial_pins, serial_pin_in, &char);

buffer[size++] = chr;

if (size == (BUFFER_SIZE-1))

size = 0;

put_string(&serial_port, serial_pin_out, “hello.ftdi.44 . echo.c: you typed”);

put_string(&serial_port, serial_pin_out, buffer)

put_char(&serial_port, serial_pin_out, 10); // new line

Now our main loop is complete but we are still
missing two things from our program:
Setting the Clock and Initializing the Pins!

int main (void) {
// set the clock divider to /1
CLKPR = (1 << CLKPCE);
DR N D

This is important — we need to tell the
AVR which ports and pins will be used

// initialize the pins
set(serial_port, serial_pin_out);

output(serial_direction, serial_pin_out); fOI’ output and on what direction

static char chr;

static char buffer[BUFFER_SIZE] = {0};

static int size = 0;

// repeat forever

while (1) {
get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;

put_string(&serial_port, serial_pin_out, “hello.ftdi.44 . echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

Now our main loop is complete but we are still
missing two things from our program:
Setting the Clock and Initializing the Pins!

int main (void) {
// set the clock divider to /1
CLKPR = (1 << CLKPCE);
DR N D

This is important — we need to tell the
AVR which ports and pins will be used

// initialize the pins
set(serial_port, serial_pin_out);

output(serial_direction, serial_pin_out); fOI’ output and on what direction

static char chr;

static char buffer[BUFFER_SIZE] = {0};

static int size = 0;

\,/vﬁf']‘;p‘zal; ’;"re"er But where do set and output
get_char(&seria]_pins, serial_pin_in, &char); come from?
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44 . echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

s

s

// hello.ftdi.44d.echo.c

s

// 115200 baud FTDI character echo, with flash string
s

// set lfuse to 0xSE for 20 MHz xtal From more of Neil’s handy #defines
S of course!

// Neil Gershenfeld

/7 12/8/10

/1 set(port,pin) will be replaced

// (c) Massachusetts Institute of Technology 2010
// This work may be reproduced, modified, distributed,

// performed, and displayed for any purpose. Copyright is |: p|n) but Wwe can S|mp|y write the
// retained and must be preserved. The work is provided easier to remember Set(port,pin)

everywhere in the code with (port

// as is; no warranty is provided, and users accept all
// liability.

1/ Why is this helpful — lets talk

#include <avr/io.h> Boolean IOgiC

#include <util/delay.h>
#include <avr/pgmspace.h>

#define output (directions,pin) (directions |= pin) // set port direction for output
#define set (port,pin) (port |= pin) // set port pin
#define clear (port,pin) (port &= (~pin)) // clear port pin

#define pin test(pins,pin) (pins & pin) // test for port pin

#define bit test (byte,bit) (byte & (1 << bit)) // test for bit set

#define bit delay time 8.5 // bit delay for 115200 with overhead

#define bit delay() delay us(bit delay time) // RS232 bit delay

#define half bit delay() _delay us(bit delay time/2Z) // RS2Z32 half bit delay
#define char delavy() delay ms(10) // char delay

Boolean

Expression Symbol Venn diagram lgobis Values
Tl B
L o | o
AND D— A-B o 3
o 1 | o
1] 1
(Al B
X o | o
OR D— A+B 0o | 1
1 0
I 1
Als
0 0
XOR D AGB g | 2
1 0
= | 1
NOT —Do— A

#define set (port,pin) (port |= pin) // set port pin
$define clear (port,pin) (port &= (~pin)) // clear port pin

| is logical OR
& is logical AND
~is logical NOT

So if we pick a pin with a 1 then OR it we will set it.
And if we AND the NOT of it we will AND a 0 and
thus unset it!

Boolean

Expression Symbol Venn dizagram afabing Values
& B
] o |0
AND D— A-B o 3
o 1 | o
il i
A | B
—X 0} o]
OR D— A+B 0o |1
1. 0]
i & 1
A | B
(0] 4]
XOR D AGB 0o | 1
s]
1 1
NOT —D— A

#define set(port,pin) (port |= pin) // set port pin
$define clear (port,pin) (port &= (~pin)) // clear port pin

| is logical OR
& is logical AND
~is logical NOT

So if we pick a pin with a 1 then OR it we will set it.
And if we AND the NOT of it we will AND a 0 and
thus unset it!

But again Neil gives us this stuff so just remember to use it and

you won’t have to worry about it! :-)

Now our main loop is complete but we are still
missing two things from our program:
Setting the Clock and Initializing the Pins!

int main (void) {
// set the clock divider to /1
CLKPR = (1 << CLKPCE); So and label as
DR N D

e e the = an output but for it is a little

set(serial_port, serial_pin_out); - -
output(serial_direction, serial_pin_out); MONE dependmg Onl it you

SET————— . . want the turned on
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
while (1) {
get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))
size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44 . echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

Wir

Pullug
Fesistor

‘ ; Vo

Logic Sate
{Buffer)

O

Syaatch

G rownd

Remember from
electronics production if
your input is a GND for a

signal you need the
pullup resistor!

cough button *cough*

// define the buttons
#define BOARD FLAG 0
#if BOARD FLAG

#define
#define
#define
#define
#define
#define
#define
#define
#else
#define
#define
#define
#define
#define
#define
#define
#define
#endif

#define input(directions,pin)

BUTTON 0 CHAR
BUTTON_ 1 CHAR
BUTTON 2 CHAR
BUTTON 3 CHAR
BUTTON_ 4 CHAR
BUTTON 5 CHAR
BUTTON 6 CHAR
BUTTON 7 CHAR

BUTTON 0 CHAR
BUTTON_ 1 CHAR
BUTTON 2 CHAR
BUTTON 3 CHAR
BUTTON 4 CHAR
BUTTON 5 CHAR
BUTTON 6 CHAR
BUTTON 7 CHAR

'll'l
121
'l3'|'
141
151
161'
'l?'l
181

rgr
i
o
g
g
"
‘o
-

//
//
//
//

An example from my final project (I had a lot
of buttons)

Also some fun short hand to reduce typing

(you can | all of you setting because you
want all of them to be a 1)

And you can set a conditional pound define
backspace (I had two Attiny’s on my button board)

menu
down arrow

enter

(directions &= (~pin)) // set port direction for input
set (input port, button 0|butten 1|button 2Z|button 3|button 4|button 5|button 6|button 7); // turn on pull-up for the buttons
input (input direction, button O|button 1|button 2|button 3|button 4|button 5|button &|button 7); // make button input

Now our main loop is complete but we are still
missing two things from our program:
Setting the Clock and Initializing the Pins!

int main (void) {
// set the clock divider to /1
CLKPR = (1 << CLKPCE);
DR N D

In this case the computer sends us

// initialize the pins values so we don’t want the pullup on
set(serial_port, serial_pin_out);

output(serial_direction, serial_pin_out); | gl =6 ol alensafiares (RS onai o) Aol Ul ie)

static char chr;
static char buffer[BUFFER_SIZE] = {0}; . . .
ctatic int size = 0: And since we defined nice names for
v/vﬁ_';ep%alg Eorever the ports and pins earlier we can just
ile .
get_char(&serial_pins, serial_pin_in, & use them again here!
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))
size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44 . echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

So are we done?!?

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>

#define set(port,pin) (port |= pin) // set port pin

#define serial_direction DDRA

#define serial_pins PINA

#define serial_pin_in (1 << PAO)

#define serial_pin_out (1 << PAL)

#define BUFFER_SIZE 24

void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0O << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size = 0; static char buffer[BUFFER_SIZE] = {0}; static char chr;
// repeat forever
while (1) {
get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

So are we done?!?

#include <avr/io.h>
#include <util/delay.h>
output(directions,pin) (directions |= pin)
set(port,pin) (port |= pin) // set port pin
serial_direction DDRA
serial_pins PINA
serial_pin_in (1 << PAO)
serial_pin_out (1 << PAl)
BUFFER_SIZE 24

cl vO T d

void puthhar(vo]ati1e unsigned char *port, unsigned char pin, char txchar){CODE_ﬁERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0O << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size = 0; static char buffer[BUFFER_SIZE] = {0}; static char chr;
// repeat forever
while (1) {
get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

So are we done?!?

#include <avr/io.h>

#include <util/delay.h>

#include <avr/pgmspace.h>

#define output(directions,pin) (directions |= pin)
#define set(port,pin) (port |= pin) // set port pin
#define serial_direction DDRA

#define serial_pins PINA

#define serial_pin_in (1 << PAO)

#define serial_pin_out (1 << PAl)

void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;

void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0O << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size = 0; static char buffer[BUFFER_SIZE] = {0}; static char chr;
// repeat forever
while (1) {
get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

So are we done?!?

#include <avr/io.h>

#include <util/delay.h>

#include <avr/pgmspace.h>

#define output(directions,pin) (directions |= pin)

#define set(port,pin) (port |= pin) // set port pin

#define serial_direction DDRA

#define serial_pins PINA

#define serial_pin_in (1 << PAO)

#define serial_pin_out (1 << PAl)

#define BUFFER_SIZE 24

void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE; One-time
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}

void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;} Setup

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0O << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size ; static char buffer[BUFFER_SIZE ; static char chr;
repec orever
while (1) {
get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

So are we done?!?

#include <avr/io.h>
#include <util/delay.h>

#include <avr/pgmspace.h>

#define output(directions,pin) (directions |= pin)
#define set(port,pin) (port |= pin) // set port pin
#define serial_direction DDRA

#define serial_pins PINA

#define serial_pin_in (1 << PAO)

#define serial_pin_out (1 << PAL)

#define BUFFER_SIZE 24

void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE; One-time
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;} Setup

int main (void) {

CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0O << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size ; static char buffer[BUFFER_SIZE ; static char chr;

while (1) { .)
get_char(&serial_pins, serial_pin_in, &har); Note whitespace doesn’t matter so |
buffer[size++] = chr; . . .
if (size == (BUFFER_SIZE-1)){size = 0:} can cram all this code into three lines

put_string(&serial_port, serial_pin_out, “hello.ftdi.44.
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

(but it’s hard to read so BAD TO DO
GENERALLY)

So are we done?!?

#include <avr/io.h>

#include <util/delay.h>

#include <avr/pgmspace.h>

#define output(directions,pin) (directions |= pin)

#define set(port,pin) (port |= pin) // set port pin

#define serial_direction DDRA

#define serial_pins PINA

#define serial_pin_in (1 << PAO)

#define serial_pin_out (1 << PAl)

#define BUFFER_SIZE 24

void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0O << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);

// repeat forever

while (1) {
get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;} Run Forever
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

So are we done?!?

#include <avr/io.h> .

#include <util/delay.h> Almost! We just need to talk
#include <avr/pgmspace.h>

#define output(directions,pin) (directions |= pin) // set port di about how we turn the code
#define set(port,pin) (port |= pin) // set port pin . " o I
#define serial_direction DDRA into Os and 1s aka “compiling
#define serial_pins PINA -
#define serial_pin_in (1 << PAO) (remember that from earller?)
#define serial_pin_out (1 << PAL)

#define BUFFER_SIZE 24

void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}

void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}

void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0O << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size = 0; static char buffer[BUFFER_SIZE] = {0}; static char chr;
// repeat forever
while (1) {
get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

Byte Code
(.0)

Compiler does this for you
automagically (by MAKE)!
So all you have to dois
write code that obeys the
rules of C (and AVR)!

Byte Code
(.0)

Lets take a look at the MAKEFILE (aka the
instructions to MAKE)

automagically (by MAKE)!
So all you have to dois
write code that obeys the
rules of C (and AVR)!

PROJECT=hello.ftdi.44.echo

The file to make

SOURCES=5 (PROJECT) .c
MMCU=attiny44
F CPU = 20000000

CFLAGS=-mmcu=5 (MMCU) -Wall -Os -DF CPU=s (F_CPU)

S (PROJECT) .hex: 5 (PROJECT) .out
avr-cbjcopy -0 ihex 5 (PROJECT) .out 35 (PROJECT).c.hex;\
avr—-size —--mcu=35 (MMCU) —-—-format=avr 5 (PROJECT) .out

5 (PROJECT) .out: 35 (SOURCES)
avr-gcc 35 (CFLAGS) -I./ -o 5(PROJECT) .out 5 (SOURCES)

program-usbtiny: 5 (PROJECT) .hex
avrdude -p t44 -P usb -c usbtiny -U flash:w:5 (PROJECT) .c.hex

program-usbtiny-fuses: $(PROJECT) .hex
avrdude -p td44 -P usb -c usbtiny -U lfuse:w:0x5E:m

PROJECT=hello.ftdi.44.echo -
What board you are making it for

CFLAGS=-mmcu=5 (MMCU) -Wall -Os -DF CPU=s (F_CPU)

S (PROJECT) .hex: 5 (PROJECT) .out
avr-cbjcopy -0 ihex 5 (PROJECT) .out 35 (PROJECT).c.hex;\
avr—-size —--mcu=35 (MMCU) —-—-format=avr 5 (PROJECT) .out

5 (PROJECT) .out: 35 (SOURCES)
avr-gcc 35 (CFLAGS) -I./ -o 5(PROJECT) .out 5 (SOURCES)

program-usbtiny: 5 (PROJECT) .hex
avrdude -p t44 -P usb -c usbtiny -U flash:w:5 (PROJECT) .c.hex

program-usbtiny-fuses: $(PROJECT) .hex
avrdude -p td44 -P usb -c usbtiny -U lfuse:w:0x5E:m

PROJECT=hello.ftdi.44.echo
SOQURCES=s5 (PROJECT) .cC
MMCU=attiny44

F CPU = 20000000

CFLAGS=-mmcu=5 (MMCU) -Wall -0s -DF CPU=S(F CPU) Compiler flags (don’t worry about it)

S (PROJECT) .hex: 5 (PROJECT) .out
avr-cbjcopy -0 ihex 5 (PROJECT) .out 35 (PROJECT).c.hex;\
avr—-size —--mcu=35 (MMCU) —-—-format=avr 5 (PROJECT) .out

5 (PROJECT) .out: 35 (SOURCES)
avr-gcc 35 (CFLAGS) -I./ -o 5(PROJECT) .out 5 (SOURCES)

program-usbtiny: 5 (PROJECT) .hex
avrdude -p t44 -P usb -c usbtiny -U flash:w:5 (PROJECT) .c.hex

program-usbtiny-fuses: $(PROJECT) .hex
avrdude -p td44 -P usb -c usbtiny -U lfuse:w:0x5E:m

PROJECT=hello.ftdi.44.echo Tells the compiler to make a

SOURCES=5 (PROJECT) .c .0 and a .hex file using avr

MMCU=attiny44 (and automatically links in

F CPU = 20000000 the standard c library and avr
library things)

CFLAGS=-mmcu=5 (MMCU) -Wall -Os -DF CPU=s (F_CPU)

S (PROJECT) .hex: 5 (PROJECT) .out
avr-cbjcopy -0 ihex 5 (PROJECT) .out 35 (PROJECT).c.hex;\
avr—-size —--mcu=35 (MMCU) —-—-format=avr 5 (PROJECT) .out

5 (PROJECT) .out: 35 (SOURCES)
avr-gcc 35 (CFLAGS) -I./ -o 5(PROJECT) .out 5 (SOURCES)

program-usbtiny: 5 (PROJECT) .hex
avrdude -p t44 -P usb -c usbtiny -U flash:w:5 (PROJECT) .c.hex

program-usbtiny-fuses: $(PROJECT) .hex
avrdude -p td44 -P usb -c usbtiny -U lfuse:w:0x5E:m

PROJECT=hello.ftdi.44.echo
SOQURCES=s5 (PROJECT) .cC
MMCU=attiny44

F CPU = 20000000

Takes a .hex file and sends it

to the avr using with a

CFLAGS=-mmcu=5 (MMCU) -Wall -Os —-DF CPU=S (F CPU)
— — program or fuse command

S (PROJECT) .hex: 5 (PROJECT) .out
avr-cbjcopy -0 ihex 5 (PROJECT) .out 35 (PROJECT).c.hex;\
avr—-size —--mcu=35 (MMCU) —-—-format=avr 5 (PROJECT) .out

5 (PROJECT) .out: 35 (SOURCES)
avr-gcc 35 (CFLAGS) -I./ -o 5(PROJECT) .out 5 (SOURCES)

program-usbtiny: 5 (PROJECT) .hex
avrdude -p t44 -P usb -c usbtiny -U flash:w:5 (PROJECT) .c.hex

program-usbtiny-fuses: $(PROJECT) .hex
avrdude -p td44 -P usb -c usbtiny -U lfuse:w:0x5E:m

PROJECT=hello.ftdi.4d4d.echo
SOURCES=S (PROJECT) . C
MMCU=attiny44

F CPU = 20000000

Here’s the best part — as long as you

don’t include big external libraries (or

CFLAGS=-mmcu=5 (MMCU) -Wall -Os -DF_CPUSqlasle]\WAee]o)YA:Tole MeER d=Ru o 1o Wlgide RY/e]U
5 (PROJECT) . hex: § (PROJECT) .out code at the top) you won’t have to ever
avr-objcopy -0 ihex $(PROJECT).out JXOIS(GaRual=RIVIVAV(AINN eIV ololoRuol=RaY/oINo}}
avr-size --mou=3 (MMCU) --format=avr Ssler|ge =ale Bill=NaElnalshFaElal &N =T B

5 (PROJECT) .out: 35 (SOURCES)
avr-gcc 35 (CFLAGS) -I./ -o 5(PROJECT) .out 5 (SOURCES)

program-usbtiny: 5 (PROJECT) .hex
avrdude -p t44 -P usb -c usbtiny -U flash:w:5 (PROJECT) .c.hex

program-usbtiny-fuses: $(PROJECT) .hex
avrdude -p td44 -P usb -c usbtiny -U lfuse:w:0x5E:m

We did it! That’s Neil’s code

explained line by line!

Key things to make sure you are doing in your
codell

« USE BRACKETS {}

e USE SEMICOLONS ;
* All helper things come before Main

* GOOGLE IS YOUR FRIEND!

So what else is in that

data sheet?

TCCROA - Timer/Counter Control Register A

Bit T 5] 5 4 3 2 1 0
0x30 (0x50) I COMDA1 [COMOAD [COMoB1 [COMOBOD - [- [WGMO1 [WGMoo I TCCROA
Read/Write RW RW RAW RW R R RN RW
Initial Value o 1] 0 o 0 0 0 0

« Bits 7:6 = COMOA[1:0]: Compare Match Output A Mode

These bits control the Output Compare pin (OCOA) behavior. If one or both of the COMOA[1:0]
bits are set, the OCOA output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OCOA pin
must be set in order to enable the output driver,

When OCOA is connected to the pin, the function of the COMOA[1:0] bits depends on the

WGMO[2:0] bit setting. Table 11-2 shows the COMOA[1:0] bit functionality when the WGMO[2:0] TI I I I e rS
bits are set to a normal or CTC mode (non-PWM).

11.8.3 TCNTO = Timer/Counter Register a n d C I O C k

Bit T 6 5 4 3 2 1 0

0x32 (0x52) | TCNTO[T:0]] Tonmo .

Read/Write RIW RIW RIW RW RIW RW RIW RIW R e I S t e r S
Initial Value i) 0 0 i 1] (i} i} 0 g

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNTO Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNTO) while the counter is running,
introduces a risk of missing a Compare Match between TCNTO and the OCROx Registers.

11.9.4 OCROA - Qutput Compare Register A

Bit 7 6 5 4 3 2 1 0

0x36 (0x56) | OCROA[7:0] | ocroa
Read/Writs RIW RIW RIW RIW RIW RIW RW RIW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNTO). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCOA pin.

Table 9-1.

Reset and Interrupt Vectors

Vector No. Program Address | Label Interrupt Source
. Owia08 RESET E:;mniuﬁiga:::a&:tzhiﬁsmt
2 0x0001 INTO External Interrupt Request 0
3 0x0002 PCINTO Pin Change Interrupt Request 0
4 0x0003 PCINT1 Pin Change Interrupt Request 1
5 0x0004 wDT Watchdog Time-out
6 0x0005 TIM1_CAPT Timer/Counter1 Capture Event
7 0x0006 TiM1_COMPA Timer/Counter1 Compare Match A
8 0x0007 TIM1_COMPB Timer/Counter1 Compare Match B
9 0x0008 TIM1_OVF Timer/Counter1 Overflow
10 0x0009 TIMO_COMPA Timer/Counter0) Compare Match A
1 Ox000A TIMO_COMPB Timer/Counter0 Compare Match B
12 0x000B TIMO_OVF Timer/Counter0 Overflow
13 0x000C ANA_COMP Analog Comparator
14 0x000D ADC ADC Conversion Complete
15 0x000E EE_RDY EEPROM Ready
16 0x000F USI_STR USI START
17 0x0010 USI_OVF US| Overflow

Interrupts

http://academy.cba.mit.edu/classes/embedded_programming/doc8183.pdf

+ Endurance: 10,000 Write/Erasa Cycles

= 128/266/612 Bytes of In-System Programmabia EEPROM
+ Endurance: 100,000 Write/Erase Cycies

= 128/266/812 Byins of Internal SRAM

= Diain Retention: 20 years ot B5°C [108 yoars a8 25°C

|ATMEL

ol Lack for Salt.

Flash & EEPROM Data Security

with Two FAM Eachy

8-bit AVR"
Microcontroller
with 2K/4K/8K
Bytes In-System
Programmable

And so so so much

B Single-andad Channais
+ 12 Differential ADG Channai Pairs with Pragrammabie Gain (1x | 20z} Flash
-P i W Timar wiih 5 ‘On-chip Gecill
= Oinechip Analog Comparator
= Univarsal Sarial interiace
. ATtiny24A

- BabugWIRE On-chip Detiug Systom iny44A

= In-Sysiem Programmabie via SPI Part ATt ny

= Internal and Exismal Intermupt Sasrces ATtinyMA
» Pin Change Interrupt on 12 Pins

= Laow Power e, ADC Kolss Reduction, Standiy and Power-doen Modes

= Enhamced Power-on Reset Circuit

=P Brown-out Circut wish Disabbs Funciran

= Intermal Calibrated Oscillatar

= Dinechip Temporature Sensar

read up!

= Auailable in 20-pin GFNMLENVEEN, 14pin SOIE, 1d-pin POIP and 18-aall UFBGA s _)
[]

more (e.g. ADC) so

= 0= MHE @ 1.0 = 85V
= 0= 10 Mz) 2.7 = 5.6
= = 30 Mz 4.5 = 5.0
* indusirisi Tempersiune Range; 40°C jo +85°C
* Low Power Consumpticn
= dictive Mode:
* 210 A ut 18V e | Mbz
= lifle Mode:
+ 33t 1.0 amd 1 MHz
= Powar-aown Mode:
*I.IHI‘LI\I'-!“‘H- [Tt S

Embedded Programming

AVR Programming: Learning to Write Software for Hardware 1st Edition

by Elliot Williams ~ (Author)

Fdrdr il 75 customer reviews
Look inside ¥
HE Kindle Doo Paperback Other Sellers
_ Make: $6.80 - $14.04 $31.86 See all 3 versions
Buy new sprime $31.86
In Stock. List Price: $44:99 Save: $13.13 (29%)
Ships from and sold by Amazon.com. Gift-wrap available. 35 New from $23.21
sprime | P
Note: Available at a lower price from other sellers, potentially without free Prime shipping.
! Want it Wednesday, Oct. 182 Order within 9 hrs 58 mins and choose One-Day Shipping at ‘ Add to Cart
=, == = checkout. Details
i Turn on 1-Click ordering
Learning to Write Software for Hardware ship to:
Elliot Williams
e T — Brian Plancher- Somerville -

02144 ~

Download Buy News For Support

£ Sublime Text

sketch_oct18a | Arduino 1.6.5 - O ¥

File Edit Sketch Tools Help

sketch_oct! 8a

i.':i:i setup() { ~
// put your setup code here, to run once:

% Sublime Text

FOLDERS 4> basebd.cc

nsorflow

{

// put your main code here, to run repeatedly:

util
[gitignore
3 ACKNOWLEDGMENTS
> ADOPTERS.md
[AUTHORS
+ BUILD
[CODEOWNERS

[configure
¢ CONTRIBUTING.md
<> ISSUE_TEMPLATE.md

BUILD

/% models.

> README.md

¢> RELEASEmd CH1< ? data[src_idx + 1] : ©;
a > 4)]; W

sqlite3 . & SI(

2]

Everything is harder on

windows = Linux VM

Sublime Text Download Buy News Forum Support

sketch_oct18a | Arduino 1.6.5 - O ¥
File Edit Sketch Tools Help

A sophisticated text editor for code, markup and prose

sketch_oct! 8a

Sublime Text

Iuci::l setup() { ~
// put your setup code here, to run once:

FOLDERS

¥ (@@ tensorflow

» Il tensorflow

But WAIT!!!T What |

> I tools void loop() |
> I util

[.gitignore

> oo about Arduino?!? }

[AUTHORS
/+ BUILD
[CODEOWNERS
[configure
<> CONTRIBUTING.md
<> ISSUE_TEMPLATEmd
[LICENSE
/% models.BUILD
¢> README.md
<> RELEASE.md
[WORKSPACE
¥ (@ sqlite3

// put your main code here, to run repeatedly:

ARDUINO :

Everything is harder on

windows =2 Linux VM

Arduino is a board, form factor, libraries, IDE,
nootloader, and headers!

& sketch_oct18a | Arduino 1.6.5 O >

File Edit Sketch Tools Help

1. It does a ton of #include and

#define behind the scenes

Arduino is a board, form factor, libraries, IDE,
nootloader, and headers!

& sketch_oct18a | Arduino 1.6.5 O >
File Edit Sketch Tools Help

sketch_octl 8a

lfoicl setup() { ~
/¢ put your setup code here, to run once:

. It does a ton of #include and
#define behind the scenes
. It has a bootloader that auto

does the compile and program

Arduino is a board, form factor, libraries, IDE,
nootloader, and headers!

sketch_oct18a | Arduino 1.6.5

File Edit Sketch Tools Help

CLKPR (1 << CLKPCE);
— CLKPR (0 << CLKPS3) | (0 << CcLKPS2) | (0 << CLKPS1) | (0 << CLKPSO);
lm,.l-',.c-'1 ;Leliuic{:lr{setup code hers, to run once: Set(ser'i a-ITport’. Ser'! a-l_pi n_(_)ut); .
output(serial_direction, serial_pin_out);
! static int size = 0;
static char buffer[BUFFER_SIZE] = {0};

void loop() | static char chr;

// put your main code here, to run repeatedly:

} while (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;

if (size == (BUFFER_SIZE-1)){size = 0;}

1. |t does a ton Of #include and put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed’);

put_string(&serial_port, serial_pin_out, buffer)

#deﬁne beh|nd the scenes put_char(&serial_port, serial_pin_out, 10); // new line

It has a bootloader that auto
does the compile and program
It wraps up the do once and
while loop code into nicely
named functions

Arduino is a board, form factor, libraries, IDE,
nootloader, and headers!

& sketch_oct18a | Arduino 1.6.5

File Edit Sketch Tools Help

CLKPR = (L

CLKPR = (0 <
set(serial_g
output(serig

static int ; OMG this seems

static char
// put your main code here, to run repeatedly:

| —eer dMazing — why don’t

_ we always use it? ,,
It does a ton of #include and p-ci you typed);
#define behind the scenes

It has a bootloader that auto

does the compile and program

It wraps up the do once and

while loop code into nicely

named functions

Arduino is unfortunately very memory intensive

which requires a nicer IC!

Product Overview

Price & Procurement

Digi-Key Part Number

1611-ATTINY44V-15SSTCT-ND

Quantity Available

4,849
Can ship immediately

Manufacturer

Microchip Technology

Quantity m |

[1611-ATTINY44V-15SSTCT-ND v

‘Customer Reference |

Manufacturer Part Number

ATTINY44V-1588T

Description

1C MCU 8BIT 4KB FLASH 14S0IC

er Standard Lead

*s

Time

12 Weeks

Detailed Description

AVR AVR® ATtiny Microcontroller IC 8-Bit 8MHz 4KB (2K x 18)
FLASH 14-S0IC

‘ Documents & Media

Add to Cart

All prices are in USD.

Price Break Unit Price Extended Price

1 0.52000 $0.52
25 044000 $11.00
100 0.37700 $37.70

Submit a request for quotation on quantities

greater than those displayed.

Product Overview

Price & Procurement

Digi-Key Part Number

ATMEGA328PB-AURTR-ND

Quantity 2000 ‘

Detailed Description

AVR AVR® ATmega Microcontroller IC 8-Bit 20MHz 32KB (16K x 16)

FLASH 32-TQFP (7x7)

Quantity Available 20,000)
Gan:shipimmediately | ATMEGA328PB-AURTR-ND v
Manufacturer | fierochip Technology. |Customer Reference
Manufacturer Part Number ,1cca328PB-AUR Add to Cart
Deseription | 5 10y 881T 32KB FLASH 32TQFP All prices are in USD.
Manufacturer Standard Lead 7 Weeks Price Break Unit Price Extended Price
Time b
2,000 1.21541 $2,430.82

Submit a request for guotation on quantities

greater than those displayed

We can buy ATTinys in
bulk for 40 cents while
the lowest price | could
find on digikey for an
ATmega328P (the
Arduino chip) was $1.20

Plus you have to solder
way more pins and take
up way more space on
your board!

Arduino is unfortunately very memory intensive

which requires a nicer IC!

Product Overview Price & Procurement

Quantity Iﬁ

My suggestion — stick with C and the
N Attiny’s for the weekly projects and talk
o to the TAs as they may know of
lightweight libraries and if you find you
need TONs of advanced libraries for your
final project then try Arduino

Time T Weeks

We can buy ATTinys in
bulk for 40 cents while
the lowest price | could
find on digikey for an
ATmega328P (the
Arduino chip) was $1.20

Plus you have to solder
way more pins and take
up way more space on
your board!

And we’re totally
100% done!

Questions?

