
A practical introduction to
(embedded) programming

Brian Plancher

Brian_Plancher@g.harvard.edu

10/10/2019

Next week’s task is simple:
1. Since the boards you made last week are perfect

and are still in perfect shape and are totally

programmable…

2. And since you already know how to code in C…

3. Write some custom code to test a function on your

board!... You did make sure that you can

programmatically change the button and/or LED

right (aka they are connected to PAx)?

Next week’s task is simple:
1. Since the boards you made last week are perfect

and are still in perfect shape and are totally

programmable…

2. And since you already know how to code in C…

3. Write some custom code to test a function on your

board!... You did make sure that you can

programmatically change the button and/or LED

right (aka they are connected to PAx)?

Next week’s task is simple:
1. Since the boards you made last week are perfect

and are still in perfect shape and are totally

programmable…

2. And since you already know how to code in C…

3. Write some custom code to test a function on your

board!... You did make sure that you can

programmatically change the button and/or LED

right (aka they are connected to PAx)?

Next week’s task is simple:
1. Since the boards you made last week are perfect

and are still in perfect shape and are totally

programmable…

2. And since you already know how to code in C…

3. Write some custom code to test a function on your

board!... You did make sure that you can

programmatically change the button and/or LED

right (aka they are connected to PAx)?

So if you are feeling

like…

One quick aside on boards before we talk
about coding…

BUTTON

LED

R

If you are going to end

up re-doing your board

this is a really solid way

to do it:

Now onto coding in AVR-C!

So if your first thought is: “What are codes”

Now onto coding in AVR-C!

So if your first thought is: “What are codes”

In short, computer code is a human-readable language which

tells the computer what to do

Now onto coding in AVR-C!

So if your first thought is: “What is AVR-C? I feel like I should

start with A…”

C is at this point the foundational language upon which

most modern languages are based (or designed to be

improvements on). AVR-C is a set of specific extensions to C

to allow you to program your Attinys.

There are 5 basic datatypes you can use in C

Remember for all things

coding Google and

Stackoverflow have

MOST of the answers

You assign Variables (aka specific named
instances of a type) to hold data

int my_age = 28;

char first_initial = 'B';

char last_initial = 'P';

You assign Variables (aka specific named
instances of a type) to hold data

int my_age = 28;

char first_initial = 'B';

char last_initial = 'P';

Almost everything

ends in semicolons

in C!

Don’t forget them!

And everything

needs a type!

You can then use conditional statements to
make decisions about what to do with data

You can then use conditional statements to
make decisions about what to do with data

int my_age = 28;

char first_initial = 'B';

char last_initial = 'P';

int above_drinking_age;

If (age >= 21){

above_drinking_age = 1;

} else {

above_drinking_age = 0;

}

You can then use conditional statements to
make decisions about what to do with data

int my_age = 28;

char first_initial = 'B';

char last_initial = 'P';

int above_drinking_age;

If (age >= 21){

above_drinking_age = 1;

} else {

above_drinking_age = 0;

}

All if and else

statements need the

{} around them!

You can create functions to encapsulate some
operation which you use a lot

int checkID(int age){

If (age >= 21){

return 1;

} else {

return 0;

}

}

int my_age = 28;

char first_initial = 'B';

char last_initial = 'P';

int above_drinking_age = checkID(my_age);

You can create functions to encapsulate some
operation which you use a lot

int checkID(int age){

If (age >= 21){

return 1;

} else {

return 0;

}

}

int my_age = 27;

char first_initial = 'B';

char last_initial = 'P';

int above_drinking_age = checkID(my_age);

When you call a

function you need to

pass in the variables

which it will use

You can create functions to encapsulate some
operation which you use a lot

int checkID(int age){

If (age >= 21){

return 1;

} else {

return 0;

}

}

int my_age = 27;

char first_initial = 'B';

char last_initial = 'P';

int above_drinking_age = checkID(my_age);

When you call a

function you need to

pass in the variables

which it will use

You also need to specify the

return type for the function

and then make sure to

return the appropriate thing

Finally you use loops to repetitively call the
same set of actions

int class_ages[3];
This is an ARRAY which is a

list of some type. In this

case it is 3 ints.

Finally you use loops to repetitively call the
same set of actions

int class_ages[3];

class_ages[0] = 17;

class_ages[1] = 21;

class_ages[2] = 54;

This is an ARRAY which is a

list of some type. In this

case it is 3 ints.

It is zero-index!

Finally you use loops to repetitively call the
same set of actions

int class_ages[3];

class_ages[0] = 17;

class_ages[1] = 21;

class_ages[2] = 54;

int index = 0;

while (index < 3){

if (checkID(class_ages[index])){

letIntoBar();

}

index = index + 1;

}

We can use a WHILE LOOP

to iterate until we hit the

condition

Finally you use loops to repetitively call the
same set of actions

int class_ages[3];

class_ages[0] = 17;

class_ages[1] = 21;

class_ages[2] = 54;

int index = 0;

while (index < 3){

if (checkID(class_ages[index])){

letIntoBar();

}

index++;

}

We can use a WHILE LOOP

to iterate until we hit the

condition

We can shorthand

index = index + 1;

to:

index+=1;

or:

Index++;

Finally you use loops to repetitively call the
same set of actions

int class_ages[3];

class_ages[0] = 17;

class_ages[1] = 21;

class_ages[2] = 54;

int index = 0;

while (index < 3){

if (checkID(class_ages[index])){

letIntoBar();

}

index++;

}

We can use a WHILE LOOP

to iterate until we hit the

condition

We can shorthand

index = index + 1;

to:

index+=1;

or:

Index++;

DON’T

FORGET

THE ++

Finally you use loops to repetitively call the
same set of actions

int class_ages[3];

class_ages[0] = 17;

class_ages[1] = 21;

class_ages[2] = 54;

for (int index = 0; index < 3; index++){

if (checkID(class_ages[index])){

letIntoBar();

}

}

We can use a FOR LOOP to

shorthand the while loop

and make sure we don’t

forget the ++

And that is

programming

in C in a

nutshell

Wait so what did we learn?

1. We use variables to store information

2. Each variable has a type (int, char, float, double)

3. We can create arrays of variables to group multiple

things of the same type together

4. We use conditional statements (if, else) to branch our

code depending on the data

5. We create functions to encapsulate common operations

6. We use loops (while, for) to repetitively call the same

set of actions

int my age = 28;

Wait so what did we learn?

1. We use variables to store information

2. Each variable has a type (int, char, float, double)

3. We can create arrays of variables to group multiple

things of the same type together

4. We use conditional statements (if, else) to branch our

code depending on the data

5. We create functions to encapsulate common operations

6. We use loops (while, for) to repetitively call the same

set of actions

int class_ages[3];

class_ages[0] = 17;

class_ages[1] = 21;

class_ages[2] = 54;

Wait so what did we learn?

1. We use variables to store information

2. Each variable has a type (int, char, float, double)

3. We can create arrays of variables to group multiple

things of the same type together

4. We use conditional statements (if, else) to branch our

code depending on the data

5. We create functions to encapsulate common operations

6. We use loops (while, for) to repetitively call the same

set of actions

If (age < 21){

return 1;

} else {

return 0;

}

Wait so what did we learn?

1. We use variables to store information

2. Each variable has a type (int, char, float, double)

3. We can create arrays of variables to group multiple

things of the same type together

4. We use conditional statements (if, else) to branch our

code depending on the data

5. We create functions to encapsulate common operations

6. We use loops (while, for) to repetitively call the same

set of actions

int checkID(int age){

If (age < 21){

return 1;

} else {

return 0;

}

}

Wait so what did we learn?

1. We use variables to store information

2. Each variable has a type (int, char, float, double)

3. We can create arrays of variables to group multiple

things of the same type together

4. We use conditional statements (if, else) to branch our

code depending on the data

5. We create functions to encapsulate common operations

6. We use loops (while, for) to repetitively call the same set

of actions

int index = 0;

while (index < 3){

if (checkID(class_ages[index])){

letIntoBar();

}

index++

}

And that is programming

in C in a nutshell

Ok but how does a

program know what

function to run?

All C programs when run will automagically
invoke a special function called main

All C programs when run will automagically
invoke a special function called main

By conven-

tion it

returns an

int as an

error code

All C programs when run will automagically
invoke a special function called main

By conven-

tion it

returns an

int as an

error code

main can call

all of your

other

functions

(and included

external

functions)

All C programs when run will automagically
invoke a special function called main

By conven-

tion it

returns an

int as an

error code

main can call

all of your

other

functions

(and included

external

functions)
Here we are calling printf

which sends text to the console

(a really easy way to debug!)

All C programs when run will automagically
invoke a special function called main

By conven-

tion it

returns an

int as an

error code

main can call

all of your

other

functions

(and included

external

functions)
Here we are calling printf

which sends text to the console

(a really easy way to debug!)

Printf can not only print hard coded

strings but also the values of variables

https://alvinalexander.com/programmi

ng/printf-format-cheat-sheet

Ok great so I type code

in, call it from main,

and then the computer

just runs it right?

Ok great so I type code

in, call it from main,

and then the computer

just runs it right?

Well not exactly…

We first need to compile the code from words
into 0s and 1s

We first need to compile the code from words
into 0s and 1s

We first need to compile the code from words
into 0s and 1s

The beauty of this is that

compilers are written for you

and you can just use them!

We first need to compile the code from words
into 0s and 1s

The beauty of this is that

compilers are written for you

and you can just use them!

In this class you’ve already

compiled code with make

We first need to compile the code from words
into 0s and 1s

The beauty of this is that

compilers are written for you

and you can just use them!

In this class you’ve already

compiled code with make

We first need to compile the code from words
into 0s and 1s

The beauty of this is that

compilers are written for you

and you can just use them!

In this class you’ve already

compiled code with make

One thing to keep in mind is code is

compiled TOP DOWN – so any helper

functions, variables, etc. need to be

written ABOVE wherever they are used!

This is why we need to #include all

external code first!

We first need to compile the code from words
into 0s and 1s

The beauty of this is that

compilers are written for you

and you can just use them!

In this class you’ve already

compiled code with make

One thing to keep in mind is code is

compiled TOP DOWN – so any helper

functions, variables, etc. need to be

written ABOVE wherever they are used!

This is why we need to #include all

external code first!

Lets work together on a programming
example!

1. In one tab open:

https://www.onlinegdb.com/online_c_compiler

which is an online console and compiler!

2. In the other open: http://bit.ly/MAS863-

Programming which is a link to some starter

code I wrote.

3. Copy and paste the starter code into the online

compiler!

Lets work together on a programming
example!

1. In one tab open:

https://www.onlinegdb.com/online_c_compiler

which is an online console and compiler!

2. In the other open: http://bit.ly/MAS863-

Programming which is a link to some starter

code I wrote.

3. Copy and paste the starter code into the online

compiler!

Code can be typed

in here!

Output is here

Click run to compile and run it!

Lets work together on a programming
example!

1. In one tab open:

https://www.onlinegdb.com/online_c_compiler

which is an online console and compiler!

2. In the other open:

http://bit.ly/HTM_sample_code

which some starter code I wrote.

3. Copy and paste the starter code into the online

compiler!

Lets work together on a programming
example!

1. In one tab open:

https://www.onlinegdb.com/online_c_compiler

which is an online console and compiler!

2. In the other open:

http://bit.ly/HTM_sample_code

which some starter code I wrote.

3. Copy and paste the starter code into the online

compiler!

Lets work together on a programming
example!

1. In one tab open:

https://www.onlinegdb.com/online_c_compiler

which is an online console and compiler!

2. In the other open:

http://bit.ly/HTM_sample_code

which some starter code I wrote.

3. Copy and paste the starter code into the online

compiler!

Your screen

should look

like this!

Lets work together on a programming
example!

1. In one tab open:

https://www.onlinegdb.com/online_c_compiler

which is an online console and compiler!

2. In the other open:

http://bit.ly/HTM_sample_code

which some starter code I wrote.

3. Copy and paste the starter code into the online

compiler!

Now lets work

on this with

the person

sitting next to

you!

Lets work together on a programming
example!

One example solution can be found at:

http://bit.ly/HTM_sample_code_sol

Ok so now that we have a little

comfort with C lets explore AVR-

C by building up / walk through

Neil’s hello.ftdi.44.echo.c to

explore AVR C code

1) what is the program

trying to do?

Listen to whatever

you type and then

echo it back to you.

1) what is

the program

trying to do?

Listen to whatever

you type and then

echo it back to you.

1) what is

the program

trying to do?

Listen to whatever

you type and then

echo it back to you.

1) what is

the program

trying to do?

Lets try to code this up in

pseudo-code!

Listen to whatever you

type and then echo it

back to you.

1) what is the

program

trying to do?

Lets try to code this up in

pseudo-code!

REPEAT FOREVER {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

Listen to whatever you

type and then echo it

back to you.

1) what is the

program

trying to do?

Lets try to code this up in

pseudo-code!

We want our Attiny to repeat forever as a simple

loop can occur thousands of times a second!

REPEAT FOREVER {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

Lets slowly replace all of these

words with the code we need to

get it to work on the ATTiny

REPEAT FOREVER {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

While (1) {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

Remember “while” defines a LOOP (can also use “for”)

“while” will run until the condition in the “()” is FALSE

so in this case it runs forever as 1 is always TRUE

Remember “while” defines a LOOP (can also use “for”)

“while” will run until the condition in the “()” is FALSE

so in this case it runs forever as 1 is always TRUE

While (1) {
Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}

In general we write all of the code that we want

the AVR to do inside a while(1) loop

It turns out that a C program always starts by running a

special function called “main”

Remember a function is an encapsulated block of code

So we need to wrap our while loop in a “main”

function if we want it to actually run forever!

int main (void) {
While (1) {

Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}
}

It turns out that a C program always starts by running a

special function called “main”

Remember a function is an encapsulated block of code

int main (void) {
While (1) {

Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}
return 0;

}
“main” always returns an integer (that’s just a C standard) and for

our purposes it doesn’t take any inputs and thus the use of “void”

In theory we therefore need the “return 0” but since we never exit

the while loop main will never return so Neil omits it for brevity

// this is a single line comment

/*

This is a multi

line comment

*/

If we look at Neil’s final code we will

see that he starts with a big long

comment – because comments are

helpful! Trust me you want to

comment A LOT. It makes it much

easier to debug. You will be happy

later! I promise!

Note: comments are for humans

they are invisible to the computer!

So lets add some comments to our code!

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}
}

Ok so then now how do we actually start to replace the

words with code?

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}
}

RETURN_TBD get_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_string(INPUTS_TBD){CODE_TBD;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}
}

Lets use some HELPER FUNCTIONS (that do the work for us)

Neil defines these 3 for

this program and their

names say what they do

(note: this is good coding

practice!)

RETURN_TBD get_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_string(INPUTS_TBD){CODE_TBD;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}
}

Since C code gets “compiled” (turned from code to 0s and

1s for the computer to use) top down if we want to define

any “helper functions” they need to appear before the

main (as the main will call them to use them)

Neil defines these 3 for

this program and their

names say what they do

(note: this is good coding

practice!)

RETURN_TBD get_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_string(INPUTS_TBD){CODE_TBD;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}
}

Since C code gets “compiled” (turned from code to 0s and

1s for the computer to use) top down if we want to define

any “helper functions” they need to appear before the

main (as the main will call them to use them)

Neil defines these 3 for

this program and their

names say what they do

(note: this is good coding

practice!)
Side note: put_string is the

closest thing to printf for our

AVRs as we can see the printed

value on the console!

RETURN_TBD get_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_string(INPUTS_TBD){CODE_TBD;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

Read in the next character the user types
Save it to the end of an array (lets call it BUFFER)
Then Display “hello.ftdi.44.echo.c: you typed” + BUFFER

}
}

Since C code gets “compiled” (turned from code to 0s and

1s for the computer to use) top down if we want to define

any “helper functions” they need to appear before the

main (as the main will call them to use them)

Lets use them to help

with these lines!

Neil defines these 3 for

this program and their

names say what they do

(note: this is good coding

practice!)

RETURN_TBD get_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_string(INPUTS_TBD){CODE_TBD;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

TBD = get_char(TBD);
Save it to the end of an array (lets call it BUFFER)
TBD = put_string(“hello.ftdi.44.echo.c: you typed”, TBD);
TBD = put_string(BUFFER, TBD)

}
}

Since C code gets “compiled” (turned from code to 0s and

1s for the computer to use) top down if we want to define

any “helper functions” they need to appear before the

main (as the main will call them to use them)

We want to get the

character from the user

and then save it (still

TBD) and then put the

default string and the

buffer out to the user

RETURN_TBD get_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_char(INPUTS_TBD){CODE_TBD;}
RETURN_TBD put_string(INPUTS_TBD){CODE_TBD;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

TBD = get_char(TBD);
Save it to the end of an array (lets call it BUFFER)
TBD = put_string(“hello.ftdi.44.echo.c: you typed”, TBD);
TBD = put_string(BUFFER, TBD)

}
}

Since C code gets “compiled” (turned from code to 0s and

1s for the computer to use) top down if we want to define

any “helper functions” they need to appear before the

main (as the main will call them to use them)

We want to get the

character from the user

and then save it (still

TBD) and then put the

default string and the

buffer out to the user

Ok but what should all the

types and input/outputs be?

Here are Neil’s functions. He did

a ton of work for you so that this

just magically if you use the baud

rate 115200 (like from last week).

If you want at a later date we can

talk about “bit-banging” but just

know that this works and you can

just use it to send characters. It

even will work between two

different Attinys.

Also don’t worry about “static” or

“volatile” or “unsigned” for now

– they are complex type things

we can get into at another date

But what are these ports and

pins he is talking about?!?

Here are Neil’s functions. He did

a ton of work for you so that this

just magically if you use the baud

rate 115200 (like from last week).

If you want at a later date we can

talk about “bit-banging” but just

know that this works and you can

just use it to send characters. It

even will work between two

different Attinys.

Also don’t worry about “static” or

“volatile” or “unsigned” for now

– they are complex type things

we can get into at another date

Remember from last time (electronics

design) that the data sheet describes

all of the ports and their names and

what pins they are etc.

Remember from last time (electronics

design) that the data sheet describes

all of the ports and their names and

what pins they are etc.

But then do I have to memorize

them for every function call that

seems tedious!

Of course not! Just like Neil, you can just “#define” then and then you

can use the descriptive names later!

In this case we have two pins in use on PORTA direction DDRA:

• one for communication in (PA0)

• one for communication out (PA1)

Of course not! Just like Neil, you can just “#define” then and then you

can use the descriptive names later!

In this case we have two pins in use on PORTA direction DDRA:

• one for communication in (PA0)

• one for communication out (PA1)
Side note the << is a bit shift but you

don’t really have to worry about it for

now and simply use it! :-)

(Google bit masking if you are curious)

#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, BUFFER)

}
}

So lets add the ports and pins into the code!

#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, BUFFER)

}
}

So lets add the ports and pins into the code!

But wait what are all of the

“&”s doing?

Pointer FUN?!

Pointer FUN?!

Hmm this is a

little complicated

do I need to

remember all of

this right now?

Hmm this is a

little complicated

do I need to

remember all of

this right now?

Not really just work off of the

example code and copy the

patterns but if you get confused

later when you are doing some

advanced code creation this slide

is helpful!

Just remember *s and &s are for

referencing things indirectly

char *pins means pointer to a char (as a type). So we need to

pass it the address of the pins (turning the value into a pointer)

And then we’ll need to pass it a pointer to a char to store the

letter the user types into. This is called a “side effect” and is why

the function is “void” (returns nothing)

So we’ll just do:

get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);

char *pins means pointer to a char (as a type). So we need to

pass it the address of the pins (turning the value into a pointer)

And then we’ll need to pass it a pointer to a char to store the

letter the user types into. This is called a “side effect” and is why

the function is “void” (returns nothing)

So we’ll just do:

get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);

Ok but this still seems like a lot to remember – oh wait

we have Neil’s example code and WE CAN JUST BASE

OUR CODE ON HIS FOR NOW UNTIL WE FULLY

UNDERSTAND IT!!!!

:-)

#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, BUFFER)

}
}

Ok so the * and & thing isn’t that scary and the function

definitions tell us what to do and we can use Neil’s

examples for now!

#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, BUFFER)

}
}

Ok so the * and & thing isn’t that scary and the function

definitions tell us what to do and we can use Neil’s

examples for now!

Side note: turns out a string is a

character array and an array is just a

pointer to the start of the array

But again copy Neil’s examples!

#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, BUFFER)

}
}

Ok fine but one other thing – how does the computer know

what “PA0” and “PA1” mean?

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

// the function that actually gets run
int main (void) {

// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, BUFFER)
}

}

Ok fine but one other thing – how does the computer know

what “PA0” and “PA1” mean?

Good point – its doesn’t but if we

“include” the avr library then we reuse

the avr defaults that someone else

wrote in our code. In this case it

happens to define DDRA and PINA and

PA0 and PA1!

Side note: Neil uses delay.h in his helper

functions which is why that is there too!

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {

// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, BUFFER)

}
}

Lets hide all of the helper functions and #defines for a

minute and finish building out our main function! First by

specifying local variables.

We define our local variables outside

the loop so that they exist forever.

Variables defined inside the loop will

get re-created and their values re-set

each time the loop happens!

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {

// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, ADDRESS_OF_CHAR);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, BUFFER)

}
}

Lets hide all of the helper functions and #defines for a

minute and finish building out our main function! First by

specifying local variables.

We define our local variables outside

the loop so that they exist forever.

Variables defined inside the loop will

get re-created and their values re-set

each time the loop happens!

We initialize both the current buffer size

and buffer to 0 (aka nothing is there)

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {

// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)

}
}

Lets hide all of the helper functions and #defines for a

minute and finish building out our main function! First by

specifying local variables.

We define our local variables outside

the loop so that they exist forever.

Variables defined inside the loop will

get re-created and their values re-set

each time the loop happens!

We initialize both the current buffer size

and buffer to 0 (aka nothing is there)

We can then use the local variables in the loop!

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {

// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
Save it to the end of an array (lets call it BUFFER)
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)

}
}

Now lets finish the main part of the loop by

adding the char to the buffer!

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {

// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)

}
}

Now lets finish the main part of the loop by

adding the char to the buffer!

Buffer is an ARRAY (list) of char

++ is shorthand for:

buffer[size] = chr;

size = size + 1;

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {

// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)

}
}

Now lets finish the main part of the loop by

adding the char to the buffer!

We then have a conditional IF ELSE

statement (in this case just an if)

Neil is using this to say if you reach

the end of the buffer go back to the

beginning and loop around!

For example if BUFFER_SIZE = 4 and

we add the alphabet we get:

[a,0,0,0] -> [a,b,0,0] -> [a,b,c,0] ->

[a,b,c,d] -> [e,b,c,d] -> [e,f,c,d]

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {

// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)

}
}

Now lets finish the main part of the loop by

adding the char to the buffer!

We then have a conditional IF ELSE

statement (in this case just an if)

Neil is using this to say if you reach

the end of the buffer go back to the

beginning and loop around!

For example if BUFFER_SIZE = 4 and

we add the alphabet we get:

[a,0,0,0] -> [a,b,0,0] -> [a,b,c,0] ->

[a,b,c,d] -> [e,b,c,d] -> [e,f,c,d]

Neil doesn’t have {} because he only

has one line after his IF (this is a

shortcut) – I would suggest ALWAYS

using {} to be safe!

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {

// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)

}
}

So now we have a relatively complete main loop

but there are a couple of things missing that are in

Neil’s code so lets take a look at them!

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {

// local variables to use in our loop

static char chr;

static char buffer[BUFFER_SIZE] = {0};

static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

So now we have a relatively complete main loop

but there are a couple of things missing that are in

Neil’s code so lets take a look at them!

Why is new line a 10?!?

(and why does the new line not work

on all windows computers?)

ASCII

Cool I see it’s a 10 but

whats an A or a 012?

Its just counting in different basses!

#define BUFFER_SIZE 24
// the function that actually gets run
int main (void) {

// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

Now our main loop is complete but we are still

missing two things from our program:

Setting the Clock and Initializing the Pins!

int main (void) {
// set the clock divider to /1
CLKPR = (1 << CLKPCE);
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
// initialize the pins
set(serial_port, serial_pin_out);
output(serial_direction, serial_pin_out);
// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

Now our main loop is complete but we are still

missing two things from our program:

Setting the Clock and Initializing the Pins!

What in the world is all of this?... Read

the datasheet! (and don’t change it for

now – you don’t have to)

int main (void) {
// set the clock divider to /1
CLKPR = (1 << CLKPCE);
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
// initialize the pins
set(serial_port, serial_pin_out);
output(serial_direction, serial_pin_out);
// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

Now our main loop is complete but we are still

missing two things from our program:

Setting the Clock and Initializing the Pins!

This is important – we need to tell the

AVR which ports and pins will be used

for output and on what direction

int main (void) {
// set the clock divider to /1
CLKPR = (1 << CLKPCE);
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
// initialize the pins
set(serial_port, serial_pin_out);
output(serial_direction, serial_pin_out);
// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

Now our main loop is complete but we are still

missing two things from our program:

Setting the Clock and Initializing the Pins!

This is important – we need to tell the

AVR which ports and pins will be used

for output and on what direction

But where do set and output

come from?

From more of Neil’s handy #defines

of course!

set(port,pin) will be replaced

everywhere in the code with (port

|= pin) but we can simply write the

easier to remember set(port,pin)

Why is this helpful – lets talk

Boolean logic

| is logical OR

& is logical AND

~ is logical NOT

So if we pick a pin with a 1 then OR it we will set it.

And if we AND the NOT of it we will AND a 0 and

thus unset it!

| is logical OR

& is logical AND

~ is logical NOT

So if we pick a pin with a 1 then OR it we will set it.

And if we AND the NOT of it we will AND a 0 and

thus unset it!

But again Neil gives us this stuff so just remember to use it and

you won’t have to worry about it! :-)

int main (void) {
// set the clock divider to /1
CLKPR = (1 << CLKPCE);
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
// initialize the pins
set(serial_port, serial_pin_out);
output(serial_direction, serial_pin_out);
// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

Now our main loop is complete but we are still

missing two things from our program:

Setting the Clock and Initializing the Pins!

So outputs we always set and label as

an output but for inputs it is a little

more complicated depending on if you

want the pull-up resistor turned on

Remember from

electronics production if

your input is a GND for a

signal you need the

pullup resistor!

cough button *cough*

An example from my final project (I had a lot

of buttons)

Also some fun short hand to reduce typing

(you can | all of you setting because you

want all of them to be a 1)

And you can set a conditional pound define

(I had two Attiny’s on my button board)

int main (void) {
// set the clock divider to /1
CLKPR = (1 << CLKPCE);
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
// initialize the pins
set(serial_port, serial_pin_out);
output(serial_direction, serial_pin_out);
// local variables to use in our loop
static char chr;
static char buffer[BUFFER_SIZE] = {0};
static int size = 0;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1))

size = 0;
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

Now our main loop is complete but we are still

missing two things from our program:

Setting the Clock and Initializing the Pins!

In this case the computer sends us

values so we don’t want the pullup on

thus we do nothing (it is off by default)

And since we defined nice names for

the ports and pins earlier we can just

use them again here!

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#define output(directions,pin) (directions |= pin)
#define set(port,pin) (port |= pin) // set port pin
#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
#define BUFFER_SIZE 24
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size = 0; static char buffer[BUFFER_SIZE] = {0}; static char chr;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

So are we done?!?

Includes

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#define output(directions,pin) (directions |= pin)
#define set(port,pin) (port |= pin) // set port pin
#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
#define BUFFER_SIZE 24
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size = 0; static char buffer[BUFFER_SIZE] = {0}; static char chr;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

So are we done?!?

Defines

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#define output(directions,pin) (directions |= pin)
#define set(port,pin) (port |= pin) // set port pin
#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
#define BUFFER_SIZE 24
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size = 0; static char buffer[BUFFER_SIZE] = {0}; static char chr;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

So are we done?!?

Helpers

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#define output(directions,pin) (directions |= pin)
#define set(port,pin) (port |= pin) // set port pin
#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
#define BUFFER_SIZE 24
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size = 0; static char buffer[BUFFER_SIZE] = {0}; static char chr;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

So are we done?!?

One-time

Setup

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#define output(directions,pin) (directions |= pin)
#define set(port,pin) (port |= pin) // set port pin
#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
#define BUFFER_SIZE 24
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size = 0; static char buffer[BUFFER_SIZE] = {0}; static char chr;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

So are we done?!?

One-time

Setup

Note whitespace doesn’t matter so I

can cram all this code into three lines

(but it’s hard to read so BAD TO DO

GENERALLY)

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#define output(directions,pin) (directions |= pin)
#define set(port,pin) (port |= pin) // set port pin
#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
#define BUFFER_SIZE 24
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size = 0; static char buffer[BUFFER_SIZE] = {0}; static char chr;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

So are we done?!?

Run Forever

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#define output(directions,pin) (directions |= pin) // set port direction for output
#define set(port,pin) (port |= pin) // set port pin
#define serial_direction DDRA
#define serial_pins PINA
#define serial_pin_in (1 << PA0)
#define serial_pin_out (1 << PA1)
#define BUFFER_SIZE 24
void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte){CODE_HERE;}
void put_char(volatile unsigned char *port, unsigned char pin, char txchar){CODE_HERE;}
void put_string(volatile unsigned char *port, unsigned char pin, char *str){CODE_HERE;}

int main (void) {
CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out);
static int size = 0; static char buffer[BUFFER_SIZE] = {0}; static char chr;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

So are we done?!?

Almost! We just need to talk

about how we turn the code

into 0s and 1s aka “compiling”

(remember that from earlier?)

C Code

(.c, .h)

Byte Code

(.o)

Hex Code

(.hex)

Compiler does this for you

automagically (by MAKE)!

So all you have to do is

write code that obeys the

rules of C (and AVR)!

C Code

(.c, .h)

Byte Code

(.o)

Hex Code

(.hex)

Compiler does this for you

automagically (by MAKE)!

So all you have to do is

write code that obeys the

rules of C (and AVR)!

Lets take a look at the MAKEFILE (aka the

instructions to MAKE)

The file to make

What board you are making it for

Compiler flags (don’t worry about it)

Tells the compiler to make a

.o and a .hex file using avr

(and automatically links in

the standard c library and avr

library things)

Takes a .hex file and sends it

to the avr using with a

program or fuse command

Here’s the best part – as long as you

don’t include big external libraries (or

simply copy and paste them into your

code at the top) you won’t have to ever

touch the MAKEFILE beyond the type of

board and file name! Thanks Neil :-)

We did it! That’s Neil’s code

explained line by line!

Key things to make sure you are doing in your
code!!

•USE BRACKETS {}

•USE SEMICOLONS ;

•All helper things come before Main

•GOOGLE IS YOUR FRIEND!

So what else is in that

data sheet?

Timers

and Clock

Registers

Interrupts

http://academy.cba.mit.edu/classes/embedded_programming/doc8183.pdf

And so so so much

more (e.g. ADC) so

read up!

:-)

Embedded Programming

Possible Lightweight Editors to Use (IDE)

Everything is harder on

windows  Linux VM

Possible Lightweight Editors to Use (IDE)

Everything is harder on

windows  Linux VM

But WAIT!!!! What

about Arduino?!?

Arduino is a board, form factor, libraries, IDE,
bootloader, and headers!

1. It does a ton of #include and

#define behind the scenes

Arduino is a board, form factor, libraries, IDE,
bootloader, and headers!

1. It does a ton of #include and

#define behind the scenes

2. It has a bootloader that auto

does the compile and program

Arduino is a board, form factor, libraries, IDE,
bootloader, and headers!

int main (void) {
CLKPR = (1 << CLKPCE);
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
set(serial_port, serial_pin_out);
output(serial_direction, serial_pin_out);
static int size = 0;
static char buffer[BUFFER_SIZE] = {0};
static char chr;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

1. It does a ton of #include and

#define behind the scenes

2. It has a bootloader that auto

does the compile and program

3. It wraps up the do once and

while loop code into nicely

named functions

Arduino is a board, form factor, libraries, IDE,
bootloader, and headers!

int main (void) {
CLKPR = (1 << CLKPCE);
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0);
set(serial_port, serial_pin_out);
output(serial_direction, serial_pin_out);
static int size = 0;
static char buffer[BUFFER_SIZE] = {0};
static char chr;
// repeat forever
While (1) {

get_char(&serial_pins, serial_pin_in, &char);
buffer[size++] = chr;
if (size == (BUFFER_SIZE-1)){size = 0;}
put_string(&serial_port, serial_pin_out, “hello.ftdi.44.echo.c: you typed”);
put_string(&serial_port, serial_pin_out, buffer)
put_char(&serial_port, serial_pin_out, 10); // new line

}
}

1. It does a ton of #include and

#define behind the scenes

2. It has a bootloader that auto

does the compile and program

3. It wraps up the do once and

while loop code into nicely

named functions

OMG this seems

amazing – why don’t

we always use it?

Arduino is unfortunately very memory intensive
which requires a nicer IC!

We can buy ATTinys in

bulk for 40 cents while

the lowest price I could

find on digikey for an

ATmega328P (the

Arduino chip) was $1.20

Plus you have to solder

way more pins and take

up way more space on

your board!

Arduino is unfortunately very memory intensive
which requires a nicer IC!

We can buy ATTinys in

bulk for 40 cents while

the lowest price I could

find on digikey for an

ATmega328P (the

Arduino chip) was $1.20

Plus you have to solder

way more pins and take

up way more space on

your board!

My suggestion – stick with C and the

Attiny’s for the weekly projects and talk

to the TAs as they may know of

lightweight libraries and if you find you

need TONs of advanced libraries for your

final project then try Arduino

And we’re totally

100% done!

Questions?

