
Can Large Language Models Reduce the
Barriers to Entry for High School Robotics?

William Xie1, Brian Plancher2

Abstract— In this study we will investigate whether we can
reduce the barriers to entry for high school robotics through
the use of code generation models derived from large language
models (LLMs). As such, we aim to raise the abstraction barrier
for the development of artificial intelligence algorithms needed
to program and control the Romi Robot used in the FIRST
Robotics Competition (FRC). To do so we develop a web
interface that helps automate the prompt-engineer step and
allows students to easily incorporate OpenAI Codex into their
workflows. To evaluate the impact of our approach, we will
survey students to understand their overall experience and their
satisfaction with, and perceived usefulness of, this technology.
Additionally we will survey FRC community members to
understand the community perception of the importance and
equity of programming education within the context of high
school robotics. We hope this study helps chart a path towards
reduced coding prerequisites for high school robotics.

I. INTRODUCTION

The FIRST Robotics Competition (FRC) is a large scale
high school robotics competition in which thousands of
teams from around the world compete to build and control
a 120 lb robot for a novel game challenge each year [1].
This requires the team to explore and learn interdisciplinary
topics with a high floor ranging from computer science, to
control systems, to electronics, to mechanical design. While
some teams are well funded and supported by large teams
of professional educators or engineers with ample time to
volunteer, many only have the support of one or two limited
volunteers. As such, there are currently vast resource and
learning inequities in FRC. These issues are particularly stark
with regards to programming as teams often have to not
only leverage domain-specific and custom vendor software
libraries, but also develop artificial intelligence algorithms
to achieve desired tasks, while overcoming the particular
characteristics of their novel physical robot.

At the same time, recent work has shown that code genera-
tion models, derived from large language models (LLMs) and
leveraging natural language descriptions like Github CoPilot
or OpenAI models (Codex, GPT-3, GPT-4, ChatGPT) can be
very successful for assisting novice programmers in univer-
sity introductory courses [2], [3]. However, these tools have
been underexplored in lower-resource domains and younger
student audiences. And, while the introductory programming
sequence has a large web corpora of data on which these
models have been trained, the FRC robotics context presents
a limited web corpus with new target tasks each year.

1William Xie is with University of Colorado at Boulder, Boulder, CO.
wixi6454@colorado.edu

2Brian Plancher is with Barnard College, Columbia University, New
York, NY. bplancher.barnard.edu

Therefore, to help brige this resource gap, we aim explore
the following research question:

Can code generation models reduce the software en-
gineering barriers to entry for high school robotics?

To do so, we will develop a web interface that automates
much of the prompt-engineering phase of effective LLM
usage to allow all students, regardless of mentor resources,
to quickly and easily integrate Codex into their workflows.
We will then have students use Codex to help them develop
software implementations of artificial intelligence algorithms
needed to program and control the Romi Robot used in the
FIRST Robotics Competition (FRC).

To evaluate the impact of our approach, we will survey
students to understand their overall experience and their
satisfaction with, and perceived usefulness of, this technol-
ogy. Additionally we will survey FRC community members
and alumni to understand the community perception of the
importance and equity of programming education within the
context of high school robotics.

II. RELATED WORK

A. LLMs for Programming Education

Code generation models are an emergent technology in
programming education with both potential to assist learning
by explaining code, expediting syntax, and debugging errors
and potential to detract from learning by fostering overre-
liance on code generation, providing incorrect or suboptimal
guidance, and leading students to academic misconduct.

In their position paper, Becker et al. [4] urged educators
to proactively identify opportunities and challenges presented
by these tools to guide their development and application in
teaching. Kazemitabaar et al. [2] found that OpenAI Codex
improved code-authoring performance without decreasing
manual code-modification skills among young Scratch learn-
ers. Prather et al. [3] observed that novice programmers were
both wary of and optimistic about GitHub Copilot, with
many of them being confused by generated code and falling
into patterns of either over-reliance or cyclic hesitation.

B. LLMs for Robot Learning

In robotics, code generation models have synergized with
natural language for the task and motion planning problem.
Given natural language instructions as input, code generation
models are able to both formulate high-level plans and
decompose them into sequences of programmatic actions. Yu
et al. [5] used OpenAI GPT-4 to atomicize robot motion plans
inputted as natural language into valid MuJoCo MPC reward
parameters, bridging the gap between high-level language

https://github.com/features/copilot
https://openai.com/product
https://www.pololu.com/product/4022

Fig. 1. Students will interact with a custom instance of Codex through a web interface to generate and debug code for deployment on a physical robot.

instructions and low-level robot actions. Code as Policies [6]
used Codex to generate executable robot policy code from
natural language commands, capable of spatial-geometric
reasoning, generalizing to new instructions, and prescribing
specific values in ambiguous instructions.

III. STUDY DESIGN

Our study will be centered on a group of high school aged
students participating in FRC during the 2023-2024 academic
year. We will provide them with access to a web interface that
automates much of the prompt-engineering phase of effective
LLM usage, as well as provide introductory education on
programming, Codex, and robotics. We will then ask them to
leverage our interface to assist in the development of artificial
intelligence algorithms needed to complete FRC tasks.

A. Prompt-Engineering Interface Design

To improve out-of-the-box code policy generation and re-
move friction in student interaction for simple commands, an
instance of Codex (temperature=1, max tokens=256)
running in an easy-to-use web interface is provided to stu-
dents. This interface, automatically appends a large prompt
detailing Romi-specific library and sensor usage to student
questions. Importantly, this prompt includes a few carefully
chosen exemplars of language interaction to policy code
generation (See Appendix B). This is critical as LLMs
need to be provided with examples of natural language
commands and corresponding policy code (few-shot prompt-
ing), in order to effective receive new commands and re-
compose API calls to generate new policy code [6]. To
make it easier for students to interact with Codex, we
developed a web-hosted question-and-answering interface
(see Figure 2), a demo version of which can be found at
codex-for-romi.williamxie.nyc.

B. Student Workflow

Students will primarily employ Codex to develop the arti-
ficial intelligence algorithms used to control the Romi robot.
Students will initially interact with the Romi robot and its
components via an FRC-specific Python simulator, RobotPy
Robot Simulator, which will also be used to transition to
real robot deployments. Students will interact with Codex
through our web interface which will allow them to gain
feedback on their code, develop new code, and integrate

Fig. 2. A screenshot of web interface which allows students to interact
with Codex through a question-and-answering interface. See Appendix A
for an code generation example.

code snippits into fully functioning software systems (See
Figure 1), without needing to understand all of the various
low-level APIs needed to leverage the Romi robot.

C. Student and Community Surveys

Throughout the duration of the FRC competition season
students will take surveys on their experience. These survey
questions fall into three categories: self-confidence in using
Codex, emotional response to using Codex, and assessment
of Codex usage, reliability, and understanding.

To gather robotics community input on programming ed-
ucation, survey participants will be recruited from ChiefDel-
phi, an online forum for FRC frequented by adult mentors
and alumni. Participants will be asked questions relating to
their team’s programming education, as well as their opinion
on both the impact of, and equitable access to, programming
education and mentorship for FRC students.

IV. CONCLUSION AND NEXT STEPS

In this paper we describe the design of a study to evaluate
the potential for code generation models to reduce the
barriers to entry for high school robotics. In the forthcoming
academic year we will leverage this approach with a group
of students participating in FRC1. We will also continue to
develop our approach to both further reduce prompt com-
plexity as well as better automate the process of connecting
the generated code to the simulated and physical robot. We
hope this effort is an important first step in lowering the
software engineering barrier of entry to robotics.

1The exact student team(s) are being actively recruited and IRB approval
is in-progress. We aim to recruit more than one team for scalability analysis.

https://codex-for-romi.williamxie.nyc
https://robotpy.readthedocs.io/en/stable/guide/simulator.html
https://robotpy.readthedocs.io/en/stable/guide/simulator.html

REFERENCES

[1] A. Melchior, F. Cohen, T. Cutter, T. Leavitt, and N. Manchester,
“More than robots: An evaluation of the first robotics competition
participant and institutional impacts,” Heller School for Social Policy
and Management, Brandeis University, 2005.

[2] M. Kazemitabaar, J. Chow, C. K. T. Ma, B. J. Ericson, D. Weintrop, and
T. Grossman, “Studying the effect of ai code generators on supporting
novice learners in introductory programming,” in Proceedings of the
2023 CHI Conference on Human Factors in Computing Systems,
Apr 2023, p. 1–23, arXiv:2302.07427 [cs]. [Online]. Available:
http://arxiv.org/abs/2302.07427

[3] J. Prather, B. N. Reeves, P. Denny, B. A. Becker, J. Leinonen,
A. Luxton-Reilly, G. Powell, J. Finnie-Ansley, and E. A. Santos, ““it’s
weird that it knows what i want”: Usability and interactions with
copilot for novice programmers,” no. arXiv:2304.02491, Apr 2023,
arXiv:2304.02491 [cs]. [Online]. Available: http://arxiv.org/abs/2304.
02491

[4] B. A. Becker, P. Denny, J. Finnie-Ansley, A. Luxton-Reilly, J. Prather,
and E. A. Santos, “Programming is hard – or at least it used to be:
Educational opportunities and challenges of ai code generation,” Dec
2022. [Online]. Available: https://arxiv.org/abs/2212.01020v1

[5] W. Yu, N. Gileadi, C. Fu, S. Kirmani, K.-H. Lee, M. G. Arenas,
H.-T. L. Chiang, T. Erez, L. Hasenclever, J. Humplik, B. Ichter,
T. Xiao, P. Xu, A. Zeng, T. Zhang, N. Heess, D. Sadigh, J. Tan,
Y. Tassa, and F. Xia, “Language to rewards for robotic skill synthesis,”
no. arXiv:2306.08647, Jun 2023, arXiv:2306.08647 [cs]. [Online].
Available: http://arxiv.org/abs/2306.08647

[6] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter,
P. Florence, and A. Zeng, “Code as policies: Language model
programs for embodied control,” no. arXiv:2209.07753, May 2023,
arXiv:2209.07753 [cs]. [Online]. Available: http://arxiv.org/abs/2209.
07753

http://arxiv.org/abs/2302.07427
http://arxiv.org/abs/2304.02491
http://arxiv.org/abs/2304.02491
https://arxiv.org/abs/2212.01020v1
http://arxiv.org/abs/2306.08647
http://arxiv.org/abs/2209.07753
http://arxiv.org/abs/2209.07753

APPENDIX

A. Our Web Interface with Example Generated Code

Fig. 3. A screenshot of web interface with generated code from a custom Codex instance leveraging in-context learning on few-shot exemplars.

B. Romi Robot Default Codex Prompt Appended to Student Prompts

Robot Definition Code
#!/usr/bin/env python3

import wpilib
import wpilib.drive
import romi
import math

from robotpy_ext.autonomous import AutonomousModeSelector
class MyRobot(wpilib.TimedRobot):

"""
This shows using the AutonomousModeSelector to automatically choose
autonomous modes.

If you find this useful, you may want to consider using the Magicbot
framework, as it already has this integrated into it.
"""
kCountsPerRevolution = 1440.0
kWheelDiameterInch = 2.75591

def robotInit(self):
self.lstick = wpilib.Joystick(0)
self.rstick = wpilib.Joystick(1)

Simple two wheel drive
self.l_motor = wpilib.Talon(0)
self.r_motor = wpilib.Talon(1)

wheel encoders
self.l_encoder = wpilib.Encoder(4, 5)
self.r_encoder = wpilib.Encoder(6, 7)

Set up the BuiltInAccelerometer
self.accelerometer = wpilib.BuiltInAccelerometer()

self.drive = wpilib.drive.DifferentialDrive(self.l_motor, self.r_motor)

Position gets automatically updated as robot moves
self.gyro = wpilib.AnalogGyro(1)
Set up the RomiGyro
self.gyro = romi.RomiGyro()

unused
self.motor = wpilib.Talon(2)
self.limit1 = wpilib.DigitalInput(1)
self.limit2 = wpilib.DigitalInput(2)
self.position = wpilib.AnalogInput(2)

Items in this dictionary are available in your autonomous mode
as attributes on your autonomous object
self.components = {"drive": self.drive, "gyro": self.gyro, "motor": self.motor,

"l_motor": self.l_motor, "r_motor": self.r_motor,
"l_encoder": self.l_encoder, "r_encoder": self.r_encoder,
"limit1": self.limit1, "limit2": self.limit2,

"position": self.position }

* The first argument is the name of the package that your autonomous
modes are located in
* The second argument is passed to each StatefulAutonomous when they
start up
self.automodes = AutonomousModeSelector("autonomous", self.components)

Use inches as unit for encoder distances
self.l_encoder.setDistancePerPulse(

(math.pi * self.kWheelDiameterInch) / self.kCountsPerRevolution
)
self.r_encoder.setDistancePerPulse(

(math.pi * self.kWheelDiameterInch) / self.kCountsPerRevolution
)
self.resetEncoders()

def resetEncoders(self) -> None:
"""Resets the drive encoders to currently read a position of 0."""
self.l_encoder.reset()
self.r_encoder.reset()

def getl_encoderCount(self) -> int:
return self.l_encoder.get()

def getr_encoderCount(self) -> int:
return self.r_encoder.get()

def getLeftDistanceInch(self) -> float:
return self.l_encoder.getDistance()

def getRightDistanceInch(self) -> float:
return self.r_encoder.getDistance()

def getAverageDistanceInch(self) -> float:
"""Gets the average distance of the TWO encoders."""
return (self.getLeftDistanceInch() + self.getRightDistanceInch()) / 2.0

def getAccelX(self) -> float:
"""The acceleration in the X-axis.

:returns: The acceleration of the Romi along the X-axis in Gs
"""
return self.accelerometer.getX()

def getAccelY(self) -> float:
"""The acceleration in the Y-axis.

:returns: The acceleration of the Romi along the Y-axis in Gs
"""
return self.accelerometer.getY()

def getAccelZ(self) -> float:
"""The acceleration in the Z-axis.

:returns: The acceleration of the Romi along the Z-axis in Gs
"""
return self.accelerometer.getZ()

def getGyroAngleX(self) -> float:
"""Current angle of the Romi around the X-axis.

:returns: The current angle of the Romi in degrees
"""
return self.gyro.getAngleX()

def getGyroAngleY(self) -> float:
"""Current angle of the Romi around the Y-axis.

:returns: The current angle of the Romi in degrees
"""
return self.gyro.getAngleY()

def getGyroAngleZ(self) -> float:
"""Current angle of the Romi around the Z-axis.

:returns: The current angle of the Romi in degrees
"""
return self.gyro.getAngleZ()

def resetGyro(self) -> None:
"""Reset the gyro"""
self.gyro.reset()

def autonomousInit(self):
self.drive.setSafetyEnabled(True)
self.automodes.start()

def autonomousPeriodic(self):
self.automodes.periodic()

def disabledInit(self):
self.automodes.disable()

def teleopPeriodic(self):
"""Called when operation control mode is enabled"""

self.drive.arcadeDrive(self.lstick.getX(), self.lstick.getY())

Move a motor with a Joystick
y = self.rstick.getY()

stop movement backwards when 1 is on
if self.limit1.get():

y = max(0, y)

stop movement forwards when 2 is on
if self.limit2.get():

y = min(0, y)

self.motor.set(y)

Robot Autonomous Code
from robotpy_ext.autonomous import StatefulAutonomous, state, timed_state
class DriveBackwards(StatefulAutonomous):

MODE_NAME = "Drive Backwards"

def initialize(self):
This allows you to tune the variable via the SmartDashboard over
networktables
self.register_sd_var("drive_speed", -1)

@timed_state(duration=0.5, next_state="drive_backwards", first=True)
def drive_wait(self):

self.drive.tankDrive(0, 0)

@timed_state(duration=5, next_state="stop")
def drive_backwards(self):

self.drive.tankDrive(self.drive_speed, -1 * (self.drive_speed))

@state() # Remove or modify this to add additional states to this class.
def stop(self):

self.drive.tankDrive(0, 0)

User Request: autonomous routine to drive forward for 5 seconds
class DriveForward(StatefulAutonomous):

MODE_NAME = "Drive Forward"

def initialize(self):
This allows you to tune the variable via the SmartDashboard over
networktables
self.register_sd_var("drive_speed", 1)

@timed_state(duration=0.5, next_state="drive_forward", first=True)
def drive_wait(self):

self.drive.tankDrive(0, 0)

@timed_state(duration=5, next_state="stop")
def drive_forward(self):

self.drive.tankDrive(self.drive_speed, -1 * (self.drive_speed))

@state() # Remove or modify this to add additional states to this class.
def stop(self):

self.drive.tankDrive(0, 0)

User Request: autonomous routine to drive five inches, using encoder feedback
class DriveFiveInches(StatefulAutonomous):

MODE_NAME = "Drive 5 Inches"
def initialize(self):

This allows you to tune the variable via the SmartDashboard over
networktables
self.register_sd_var(’drive_speed’, 1)

@timed_state(duration=0.5, next_state="drive_forward", first=True)
def drive_wait(self):

self.l_encoder.reset()
self.r_encoder.reset()
self.drive.tankDrive(0, 0)

@state()
def drive_forward(self):

print(self.l_encoder.getDistance())

if self.l_encoder.getDistance() < 5:
motor speeds chosen through experimentation
self.drive.tankDrive(self.drive_speed, -1 * (self.drive_speed))

else:
self.drive.tankDrive(0, 0)
self.next_state(’stop’)

@state() # Remove or modify this to add additional states to this class.
def stop(self):

self.drive.tankDrive(0, 0)

	Introduction
	Related Work
	LLMs for Programming Education
	LLMs for Robot Learning

	Study Design
	Prompt-Engineering Interface Design
	Student Workflow
	Student and Community Surveys

	Conclusion and Next Steps
	References
	Appendix
	Our Web Interface with Example Generated Code
	Romi Robot Default Codex Prompt Appended to Student Prompts

