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I. INTRODUCTION AND OVERVIEW

In order for robotic systems to operate safely and ef-
fective in dynamic real-world environments, their compu-
tations must run at real-time rates while meeting power
constraints. Accelerating robotic kernels on heterogeneous
hardware, such as GPUs and FPGAs, is emerging as a
crucial tool for enabling such performance [1], [2], [3], [4],
[5], [6], [7]. Such computational improvements, combined
with the growing dependency on ROS 2 [8], [9] across the
robotics community, accentuates the community’s demand
for a standardized, industry-grade benchmark to evaluate
varied hardware solutions.

Recently, there has been a plethora of workshops and tu-
torials focusing on benchmarking robotics applications [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
and while benchmarks for specific robotics algorithms [21],
[22] and certain end-to-end robotic applications, such as
drones [23], [24], [25], [26], do exist, the nuances of analyz-
ing general ROS 2 computational graphs on heterogeneous
hardware is yet to be fully understood.

In this paper, we introduce RobotPerf, an open-source and
community-driven benchmarking tool designed to assess the
performance of robotic computing systems in a standardized,
architecture-neutral, and reproducible way, accommodating
the various combinations of hardware and software in dif-
ferent robotic platforms (see Figure 1). RobotPerf focuses
on evaluating robotic workloads in the form of ROS 2
computational graphs on a wide array of hardware setups,
encompassing a complete robotics pipeline, emphasizing
real-time critical metrics, and incorporating two distinct
benchmarking methodologies. These approaches are: black-
box testing, which measures performance by eliminating
upper layers and replacing them with a test application,
and grey-box testing, an application-specific measure that
observes internal system states with minimal interference.
The framework is open-source, user-friendly, easily extend-
able for evaluating custom ROS 2 computational graphs,
and collaborates with major hardware acceleration vendors
for a standardized benchmarking approach. We validate our
approach through heterogeneous hardware benchmarks.
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Fig. 1: A high level overview of RobotPerf.

II. SUMMARY OF RESULTS

We conduct comprehensive benchmarking using Robot-
Perf to provide case studies of its uses and insights. Robot-
Perf’s source code and documentation are available at http
s://github.com/robotperf/benchmarks and its
methodologies are currently being used in industry.

First, given our ability to benchmark 18 platforms (bottom
of Figure 2), RobotPerf is capable of benchmarking heteroge-
neous hardware platforms and workloads, paving the way for
community-driven co-design and optimization of hardware
and software. Second, we show how the default “one-size-
fits-all” hardware selection strategy fails to capitalize on the
nuanced differences in workload demands. For example, the
latency radar plot for control (Figure 2 col 3, row 1), shows
that the i7-12700H (I7H) outperforms the NVIDIA AGX
Orin Dev. Kit (NO) on benchmarks C1, C3, C4, and C5,
but is 6.5× slower on benchmark C2. Finally, we show
how hardware acceleration can improve performance. For
example, in the perception benchmarks (Figure 2 col 1),
we include AMD’s Kria KR260 hardware solution with and
without a domain-specific hardware accelerator (ROBOT-
CORE Perception, a soft-core running in the FPGA for
accelerating perception computations). We find that hardware
acceleration can enable performance gains of as much as
11.5× (from 173 ms down to 15 ms for benchmark a5).

https://accelerationrobotics.com/
https://aau.at/
https://harvard.edu
https://www.gatech.edu/
https://www.cmu.edu/
https://www.jku.at/
https://ford.com
https://www.amd.com/
https://intel.com/
https://www.bu.edu/cs/
https://www.bu.edu/cs/
https://cs.barnard.edu
https://github.com/robotperf/benchmarks
https://github.com/robotperf/benchmarks
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Fig. 2: Benchmarking results on diverse hardware platforms across perception, localization, control, and manipulation
workloads defined in RobotPerf beta Benchmarks. Radar plots illustrate the latency, throughput, and power consumption
for each hardware solution and workload, with reported values representing the maximum across a series of runs. The
labels of vertices represent the workloads defined in our open-source repository at https://github.com/robot
perf/benchmarks. Each hardware platform and performance testing procedure is delineated by a separate color, with
darker colors representing Black-box testing and lighter colors Grey-box testing. In the figure’s key, the hardware platforms
are categorized into four specific types: general-purpose hardware, heterogeneous hardware, reconfigurable hardware, and
accelerator hardware. Within each category, the platforms are ranked based on their Thermal Design Power (TDP), which
indicates the maximum power they can draw under load. The throughput values for manipulation tasks and power values
for localization tasks have not been incorporated into the beta version of RobotPerf. As RobotPerf continues to evolve,
more results will be added in subsequent iterations.

https://github.com/robotperf/benchmarks
https://github.com/robotperf/benchmarks


REFERENCES

[1] S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas,
and V. J. Reddi, “Robomorphic computing: a design methodology
for domain-specific accelerators parameterized by robot morphology,”
in ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), 2021, pp.
674–686.

[2] W. Liu, B. Yu, Y. Gan, Q. Liu, J. Tang, S. Liu, and Y. Zhu, “Archytas:
A framework for synthesizing and dynamically optimizing accelerators
for robotic localization,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021, pp. 479–493.

[3] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[4] B. Plancher, S. M. Neuman, R. Ghosal, S. Kuindersma, and V. J.
Reddi, “Grid: Gpu-accelerated rigid body dynamics with analytical
gradients,” in 2022 International Conference on Robotics and Automa-
tion (ICRA). IEEE, 2022, pp. 6253–6260.

[5] V. Mayoral-Vilches, S. M. Neuman, B. Plancher, and V. J. Reddi,
“Robotcore: An open architecture for hardware acceleration in ros 2,”
in 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2022, pp. 9692–9699.

[6] Z. Wan, A. Lele, B. Yu, S. Liu, Y. Wang, V. J. Reddi, C. Hao, and
A. Raychowdhury, “Robotic computing on fpgas: Current progress, re-
search challenges, and opportunities,” in 2022 IEEE 4th International
Conference on Artificial Intelligence Circuits and Systems (AICAS).
IEEE, 2022, pp. 291–295.

[7] S. Liu, Z. Wan, B. Yu, and Y. Wang, Robotic computing on fpgas.
Springer, 2021.

[8] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[9] V. Mayoral-Vilches, “ros-robotics-companies,” https://github.com/vma
yoral/ros-robotics-companies, [Accessed: July 9, 2023].

[10] “Icra2021 workshop cloud-based competitions and benchmarks for
robotic manipulation and grasping,” June 2021. [Online]. Available:
https://sites.google.com/view/icra2021-workshop/home

[11] “Icra 2022 workshop determining appropriate metrics and test methods
for soft actuators in robotic systems,” May 2022. [Online]. Available:
https://sites.google.com/andrew.cmu.edu/softactuatormetrics/

[12] “Icra 2022 workshop on releasing robots into the wild: Simulations,
benchmarks, and deployment,” May 2022. [Online]. Available:
https://www.dynsyslab.org/releasing-robots-into-the-wild-workshop/

[13] “Iros 2020 workshop on benchmarking progress in autonomous
driving,” Oct. 2020. [Online]. Available: https://www.robotics.qmul.
ac.uk/events/iros-2021-workshop/

[14] “Iros 2021 workshop - benchmarking of robotic grasping and
manipulation: protocols, metrics and data analysis,” Sept. 2021.

[Online]. Available: https://www.robotics.qmul.ac.uk/events/iros-202
1-workshop/

[15] “Evaluating motion planning performance,” Oct. 2022. [Online].
Available: https://motion-planning-workshop.kavrakilab.org/

[16] “Methods for objective comparison of results in intelligent robotics
research,” Oct. 2023. [Online]. Available: http://www.robot.t.u-tokyo
.ac.jp/TCPEBRAS IROS2023/index.html

[17] “Benchmarking tools for evaluating robotic assembly of small parts,”
July 2020. [Online]. Available: https://www.uml.edu/research/nerve/a
ssembly-workshop-rss-2020.aspx

[18] “2021 rss workshop on advancing artificial intelligence and
manipulation for robotics: Understanding gaps, industry and academic
perspectives, and community building,” July 2021. [Online]. Available:
https://sites.google.com/view/rss-ai-manipulationperspective/home

[19] “Robot learning in the cloud: Remote operations and benchmarking,”
July 2022. [Online]. Available: https://sites.google.com/andrew.cmu.
edu/cloud-robotics-benchmarking/

[20] “Datasets and benchmarking tools for advancing and evaluating
robotic manufacturing,” July 2023. [Online]. Available: https:
//sites.google.com/view/rss-2023-nist-moad

[21] M. Bakhshalipour, M. Likhachev, and P. B. Gibbons, “Rtrbench: A
benchmark suite for real-time robotics,” in 2022 IEEE International
Symposium on Performance Analysis of Systems and Software (IS-
PASS). IEEE, 2022, pp. 175–186.

[22] S. M. Neuman, T. Koolen, J. Drean, J. E. Miller, and S. Devadas,
“Benchmarking and workload analysis of robot dynamics algorithms,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2019, pp. 5235–5242.

[23] B. Boroujerdian, H. Genc, S. Krishnan, W. Cui, A. Faust, and V. Reddi,
“Mavbench: Micro aerial vehicle benchmarking,” in 2018 51st annual
IEEE/ACM international symposium on microarchitecture (MICRO).
IEEE, 2018, pp. 894–907.

[24] S. Krishnan, Z. Wan, K. Bhardwaj, P. Whatmough, A. Faust, S. M.
Neuman, G.-Y. Wei, D. Brooks, and V. J. Reddi, “Automatic domain-
specific soc design for autonomous unmanned aerial vehicles,” in
2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2022, pp. 300–317.

[25] S. Krishnan, Z. Wan, K. Bhardwaj, N. Jadhav, A. Faust, and V. J.
Reddi, “Roofline model for uavs: A bottleneck analysis tool for
onboard compute characterization of autonomous unmanned aerial
vehicles,” in 2022 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2022, pp. 162–
174.

[26] D. Nikiforov, S. C. Dong, C. L. Zhang, S. Kim, B. Nikolic, and Y. S.
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