In this exciting Professional Certificate program offered by Harvard University and Google TensorFlow, you will learn about the emerging field of Tiny Machine Learning (TinyML), its real-world applications, and the future possibilities of this transformative technology. TinyML is a cutting-edge field that brings the transformative power of machine learning (ML) to the performance-constrained and power-constrained domain of embedded systems. The program will emphasize hands-on experience and is a collaboration between expert faculty at Harvard’s John A. Paulson School of Engineering and Applied Sciences (SEAS) and innovative members of Google’s TensorFlow team.
An introductory course on Applied AI at the intersection of Machine Learning and Embedded IoT Devices. We provide background on both topics and then dive into the unique challenges faced at that intersection point with hands-on assignments using TensorFlow, Google Colab, and Arduino.
Modern embedded systems are intelligent devices that involve complex hardware and software to perform a multitude of cognitive functions collaboratively. Designing such systems requires us to have deep understanding of the target application domains, as well as an appreciation for the coupling between the hardware and the software subsystems.This course is structured around building “systems” for Autonomous Machines (cars, drones, ground robots, manipulators, etc.). For example, we will discuss what are all the hardware and software components that are involved in developing the intelligence required for an autonomous car?
This course provides a hands-on introduction to the resources for designing and fabricating smart systems, including CAD/CAM/CAE; NC machining, 3-D printing, injection molding, laser cutting; PCB layout and fabrication; sensors and actuators; analog instrumentation; embedded digital processing; wired and wireless communications. This course also puts emphasis on learning how to use the tools as well as understand how they work. By the end of the course you will know how to make... almost anything.