Optimization

The 2025 Summer School on Optimization for Robotics

The 2025 Summer School on Optimization for Robotics took place on 14–18 July 2025 at the University of Patras in Patras, Greece. The event brought together researchers, students, and practitioners from across the world to learn, exchange ideas, and gain hands-on experience at the forefront of optimization methods for robotics. Overall, we had 89 total participants (∼7% undergraduate, ∼8% industry/engineer/faculty, ∼18% masters, and ∼66% Ph.D.) from more than 20 countries spanning four continents. The weeklong program featured a balanced mix of lectures, plenary talks, daily practical sessions, live demos, and social activities. The lectures covered foundational and advanced topics in optimization for planning, control, and learning in robotics, while the plenary speakers provided broad perspectives on emerging research directions and industrial applications.

COSC 1/69.23-F25: Parallel Optimization for Robotics

Many stages of state-of-the-art robotics pipelines rely on the solutions of underlying optimization algorithms. Unfortunately, many of these approaches rely on simplifications and conservative approximations in order to reduce their computational complexity and support online operation. At the same time, parallelism has been used to significantly increase the throughput of computationally expensive algorithms across the field of computer science. And, with the widespread adoption of parallel computing platforms such as GPUs, it is natural to consider whether these architectures can benefit robotics researchers interested in solving computationally constrained problems online. This course will provide students with an introduction to both parallel programming on GPUs as well as numerical optimization. It will then dive into the intersection of those fields through case studies of recent state-of-the-art research and culminate in a team-based final project.

Optimization for Robotics Summer School

The overall goal of the Optimization for Robotics Summer School is to provide roboticists with a deeper understanding of the connections between seemingly disparate topics and to motivate the cross-pollination of ideas across subfields.

COMS-BC3159-F24: Parallel Optimization for Robotics

Many stages of state-of-the-art robotics pipelines rely on the solutions of underlying optimization algorithms. Unfortunately, many of these approaches rely on simplifications and conservative approximations in order to reduce their computational complexity and support online operation. At the same time, parallelism has been used to significantly increase the throughput of computationally expensive algorithms across the field of computer science. And, with the widespread adoption of parallel computing platforms such as GPUs, it is natural to consider whether these architectures can benefit robotics researchers interested in solving computationally constrained problems online. This course will provide students with an introduction to both parallel programming on GPUs as well as numerical optimization. It will then dive into the intersection of those fields through case studies of recent state-of-the-art research and culminate in a team-based final project.

COMS-BC3159-SP24: Parallel Optimization for Robotics

Many stages of state-of-the-art robotics pipelines rely on the solutions of underlying optimization algorithms. Unfortunately, many of these approaches rely on simplifications and conservative approximations in order to reduce their computational complexity and support online operation. At the same time, parallelism has been used to significantly increase the throughput of computationally expensive algorithms across the field of computer science. And, with the widespread adoption of parallel computing platforms such as GPUs, it is natural to consider whether these architectures can benefit robotics researchers interested in solving computationally constrained problems online. This course will provide students with an introduction to both parallel programming on GPUs as well as numerical optimization. It will then dive into the intersection of those fields through case studies of recent state-of-the-art research and culminate in a team-based final project.

COMS-BC3159-SP23: Parallel Optimization for Robotics

Many stages of state-of-the-art robotics pipelines rely on the solutions of underlying optimization algorithms. Unfortunately, many of these approaches rely on simplifications and conservative approximations in order to reduce their computational complexity and support online operation. At the same time, parallelism has been used to significantly increase the throughput of computationally expensive algorithms across the field of computer science. And, with the widespread adoption of parallel computing platforms such as GPUs, it is natural to consider whether these architectures can benefit robotics researchers interested in solving computationally constrained problems online. This course will provide students with an introduction to both parallel programming on CPUs and GPUs as well as optimization algorithms for robotics applications. It will then dive into the intersection of those fields through case studies of recent state-of-the-art research and culminate in a team-based final project.