Quadrotor

TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers

Model-predictive control (MPC) is a powerful tool for controlling highly dynamic robotic systems subject to complex constraints. However, MPC is computationally demanding, and is often impractical to implement on small, resource-constrained robotic platforms. We present TinyMPC, a high-speed MPC solver with a low memory footprint targeting the microcontrollers common on small robots. Our approach is based on the alternating direction method of multipliers (ADMM) and leverages the structure of the MPC problem for efficiency. We demonstrate TinyMPC both by benchmarking against the state-of-the-art solver OSQP, achieving nearly an order of magnitude speed increase, as well as through hardware experiments on a 27 g quadrotor, demonstrating high-speed trajectory tracking and dynamic obstacle avoidance.

Code Generation for Conic Model-Predictive Control on Microcontrollers with TinyMPC

We extend TinyMPC, an open-source, high-speed solver targeting low-power embedded control applications, to handle second-order cone constraints. We also present code-generation software to enable deployment of TinyMPC on a variety of microcontrollers. We benchmark our generated code against state-of-the-art embedded QP and SOCP solvers, demonstrating a two-order-of-magnitude speed increase over ECOS while consuming less memory. Finally, we demonstrate TinyMPC's efficacy on the Crazyflie, a lightweight, resource-constrained quadrotor with fast dynamics. TinyMPC and its code-generation tools are publicly available at [tinympc.org](https://tinympc.org/).