Tiny robot learning lies at the intersection of embedded systems, robotics, and ML, compounding the challenges of these domains. This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
Robots are cyber-physical systems – leveraging computational intelligence to sense and interact with the real world. As such, robotics is a very diverse, cross-disciplinary field. This introductory course exposes learners to the vast opportunities and challenges posed by the interdisciplinary nature of robotics. While grounded and focused in computation this course also explores hands-on electromechanical and ethical topics that are an integral part of a real-world robotic system. Topics will include: a survey of the algorithmic robotics pipeline (perception, mapping, localization, planning, control, and learning), an introduction to cyber-physical system design, and responsible AI. The course will culminate in a team-based final project.
We introduce robomorphic computing; a methodology to transform robot morphology into a customized hardware accelerator morphology. In this work, we (i) present this design methodology; (ii) use the methodology to generate a parameterized accelerator design for the gradient of rigid body dynamics; (iii) evaluate FPGA and synthesized ASIC implementations; and (iv) describe how the design can be automatically customized for other robot models. Our FPGA accelerator achieves speedups of 8x and 86x over CPU and GPU latency, and maintains an overall speedup of 1.9x to 2.9x deployed in an end-to-end coprocessor system. ASIC synthesis indicates an additional factor of 7.2x.
Modern embedded systems are intelligent devices that involve complex hardware and software to perform a multitude of cognitive functions collaboratively. Designing such systems requires us to have deep understanding of the target application domains, as well as an appreciation for the coupling between the hardware and the software subsystems.This course is structured around building “systems” for Autonomous Machines (cars, drones, ground robots, manipulators, etc.). For example, we will discuss what are all the hardware and software components that are involved in developing the intelligence required for an autonomous car?
Driverless vehicle technology has been growing at an exponential pace since the DARPA Grand and Urban Challenges pushed the state of the art to demonstrate what was already possible. Commercial interest and aggressive development are being driven by Google, Toyota, Tesla, Continental, Uber, Apple, NVidia, and many other companies. There is no single technology or “killer app” available to solve the myriad perception, understanding, localization, planning, and control problems required to achieve robust navigation in highly variable, extremely complex and dynamically changing environments. This summer, Beaver Works Summer Institute will offer nine teams of five students, each with its own MIT-designed RACECAR (Rapid Autonomous Complex Environment Competing Ackermann steeRing) robot, the opportunity to explore the broad spectrum of research in these areas, learn to collaborate, and demonstrate fast, autonomous navigation in a Mini Grand Prix to Move... Explore... Learn...Race!