TinyML

Closing the Sim-to-Real Gap for Ultra-Low-Cost, Resource-Constrained, Quadruped Robot Platforms

As a step toward robust learning pipelines for these constrained robot platforms, we demonstrate how existing state-of-the-art imitation learning pipelines can be modified and augmented to support low-cost, limited hardware. By reducing our model’s observational space, leveraging TinyML to quantize our model, and adjusting the model outputs through post-processing, we are able to learn and deploy successful walking gaits on an 8-DoF, $299 (USD) toy quadruped robot that has reduced actuation and sensor feedback, as well as limited computing resources.

Tiny Robot Learning: Challenges and Directions for Machine Learning in Resource-Constrained Robots

Tiny robot learning lies at the intersection of embedded systems, robotics, and ML, compounding the challenges of these domains. This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.

Machine Learning Sensors

Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications. Current instantiations of embedded machine learning (ML) suffer from complex integration, lack of modularity, and privacy and security concerns from data movement. This article proposes a more data-centric paradigm for embedding sensor intelligence on edge devices to combat these challenges. Our vision for 'sensor 2.0' entails segregating sensor input data and ML processing from the wider system at the hardware level and providing a thin interface that mimics traditional sensors in functionality. This separation leads to a modular and easy-to-use ML sensor device. We discuss challenges presented by the standard approach of building ML processing into the software stack of the controlling microprocessor on an embedded system and how the modularity of ML sensors alleviates these problems. ML sensors increase privacy and accuracy while making it easier for system builders to integrate ML into their products as a simple component. We provide examples of prospective ML sensors and an illustrative datasheet as a demonstration and hope that this will build a dialogue to progress us towards sensor 2.0.

EASI-22: Edge AI Summer Institute

EASI-22 was a 3-day, hands-on workshop for high school teachers and students exploring real-world applications of artificial intelligence at the edge through hands-on examples of Tiny Machine Learning (TinyML). This program was a collaboration between Navajo Technical University, the Harvard John A. Paulson School of Engineering and Applied Sciences, and Barnard College, Columbia University.

TinyML: Applied AI for Development

We believe that TinyML has a significant role to play in achieving the SDGs and facilitating scientific research in areas such as environmental monitoring, physics of complex systems and energy management. To broaden access and participation and increase the impact of this new technology, we present an initiative that is creating and supporting a global network of academic institutions working on TinyML in developing countries. We suggest the development of additional open educational resources, South–South academic collaboration and pilot projects of at-scale TinyML solutions aimed at addressing the SDGs.

SciTinyML-22: Scientific Use of Machine Learning on Low-Power Devices

SciTinyML-22 was a, five day, hands-on, virtual workshop exploring how embedded ML (tinyML) can impact the developing world through hands-on activities using embedded hardware devices. SciTinyML-22 was run regionally with seperate workshops for Africa (187 participants from 29 countries), Asia, and Latin America. This program was a collaboration led by the Abdus Salam International Centre for Theoretical Physics (ICTP), the Harvard John A. Paulson School of Engineering and Applied Sciences, and TinyMLedu.

TinyMLedu: The Tiny Machine Learning Open Education Initiative

[TinyMLedu](https://tinymledu.org) is working to build an international coalition of researchers and practitioners advancing TinyML in the developing world, and to develop and share high-quality, open-access educational materials globally.

Widening Access to Applied Machine Learning with TinyML

In this paper, we describe our pedagogical approach to increasing access to applied ML through a four part massive open online course (MOOC) on Tiny Machine Learning (TinyML) produced in collaboration between academia (Harvard University) and industry (Google). We suggest that TinyML, ML on resource-constrained embedded devices, is an attractive means to widen access because TinyML both leverages low-cost and globally accessible hardware, and encourages the development of complete, self-contained applications, from data collection to deployment. We also released the course materials publicly, hoping they will inspire the next generation of ML practitioners and educators and further broaden access to cutting-edge ML technologies.

SciTinyML-21: Scientific Use of Machine Learning on Low-Power Devices

SciTinyML-21 was a, five day, hands-on, virtual, global (216 participants from 48 countries) workshop exploring how embedded ML (tinyML) can impact the developing world through hands-on activities using the Edge Impulse cloud platform and a smartphone. This program was a collaboration between the Abdus Salam International Centre for Theoretical Physics (ICTP), the Harvard John A. Paulson School of Engineering and Applied Sciences, and TinyML4D.

CRESTLEX 3.0 - CReating Effective STem Learning EXperiences

CRESTLEX 3.0 was a first-of-its-kind, 4-day, hands-on workshop for high school teachers and students exploring real-world applications of artificial intelligence through hands-on examples of Tiny Machine Learning (TinyML). This program was a collaboration between Navajo Technical University, the Harvard John A. Paulson School of Engineering and Applied Sciences, Google, and Edge Impulse.

HarvardX: Tiny Machine Learning MOOC

In this exciting Professional Certificate program offered by Harvard University and Google TensorFlow, you will learn about the emerging field of Tiny Machine Learning (TinyML), its real-world applications, and the future possibilities of this transformative technology. TinyML is a cutting-edge field that brings the transformative power of machine learning (ML) to the performance-constrained and power-constrained domain of embedded systems. The program will emphasize hands-on experience and is a collaboration between expert faculty at Harvard’s John A. Paulson School of Engineering and Applied Sciences (SEAS) and innovative members of Google’s TensorFlow team.

Harvard CS249r: Tiny Machine Learning (TinyML)

An introductory course on Applied AI at the intersection of Machine Learning and Embedded IoT Devices. We provide background on both topics and then dive into the unique challenges faced at that intersection point with hands-on assignments using TensorFlow, Google Colab, and Arduino.